摘要。我们最近确定了石墨烯中受保护的拓扑半学,该拓扑半学表现为零能量边缘模式鲁棒和相互作用。在这里,我们解决了该半学的特征,并表明,与最低能带相关的霍尔电导率的Z拓扑不变,可以从谐振响应到在DIRAC点上分析的圆形极化光等效。中间能带(包括费米表面)的(非量化的)电导率响应也会引起z 2不变。我们强调散装的对应关系,作为受保护的拓扑半金属,即一个在平面中极化的自旋构型在与稳健边缘模式相关的绝缘阶段,而另一个则处于金属状态。边缘的量化运输等效于1 2 - 1
RNA疫苗和CRISPR(簇簇的定期间隔短的短粒子重复重复序列)制造商通常会挑战制造商,以准确表征和量化不同尺寸的RNA分子,杂质和降解的RNA物种,以及疫苗或个性化药物产品中的降解RNA物种。1,2为了帮助克服这些挑战,在本技术说明中,我们提出了一种基于分析套件的解决方案,用于表征最终产品中的RNA完整性和RNA片段化。使用多毛细管电泳平台,我们展示了有效且延时的工作流程,以评估潜在的mRNA疫苗和CRISPR试剂的各种关键质量属性(CQA)(图1)。对于CRISPR/CAS9基因编辑系统的主要产物的纯度含量获得了出色的可重复性,CV <2%。这些结果证明了RNA 9000纯度和完整性套件在50至9,000个碱基范围内将单链RNA产物分离的能力。
本应用报告详细介绍了在复杂生物基质中进行毒理药物筛选的方法。该方法是在 Agilent Revident 液相色谱/四极杆飞行时间质谱仪 (LC/Q-TOF MS) 上开发的,配有 Agilent ChemVista 光谱库管理器和 Agilent MassHunter 定量分析软件 12.1 版。嵌入在 MassHunter 定量分析软件中的 LC Screener 工具用于快速查看数据独立采集 (DIA) 方法的结果,该方法适用于典型的大浓度范围内的多种目标分析物。本应用报告描述了完整的筛选工作流程,包括样品制备、可疑药物筛选和数据分析结果,用于在相关生物基质中筛选毒理药物。
本申请说明详细介绍了复杂生物矩阵中毒理药物筛查的方法。该方法是在具有敏捷的ChemVista Spectral Spectral Library库Manager和Agilent MassHunter定量分析软件的Agilent速度液相色谱/四极型飞行时间质谱仪(LC/Q-TOF MS)上开发的。版本12.1。嵌入在MassHunter定量分析软件中的LC筛选器工具用于快速回顾典型的大浓度范围内的广泛目标分析物的数据独立于数据的采集(DIA)方法。本申请说明描述了一个完整的筛选工作流程,包括样品制备,可疑筛查和数据分析结果,用于筛查相关生物矩阵中毒理学药物。
地图是评估土壤和生态杂质的过程和危害,水文建模以及自然资源和土地管理的重要工具。基于现场调查或航空照片的映射土地形式的传统技术可能是时间和劳动密集型,强调了基于遥感产品的自动或半自动方法的重要性。此外,时间密集的手动标记也可以是主观的,而不是对地形的客观识别。在这里,我们实施了一种客观的方法,该方法将随机的森林机器学习算法应用于一组观察到的地形数据和1M水平分辨率裸露的数字高程模型(DEM),它是从空气中的光检测和范围数据(LIDAR)数据开发的,以快速映射丘陵地面的各种地面地面。地面分类包括高地高原,山脊,凸面,平面斜坡,凹陷坡,溪流通道和山谷底部,横跨俄克拉荷马州东北部俄克拉群岛的Ozark山脉的400公里2丘陵景观。我们使用了4200个地面观测值(每个地形600个)和八个从随机森林算法中的2 m,5 m和10 m分辨率LIDAR DEM得出的地形指数,以开发2 m,5 m和10 m分辨率地分辨率地面地面模型。我们通过比较观察到的地貌与建模地面的地图来测试DEM分辨率在映射地图中的有效性。结果表明,当协变量以2 m的分辨率分辨率为〜89%时,该方法绘制了约84%的观察到的地形,分辨率为10 m。使用这种方法开发的地图图具有多种潜在应用。然而,预测的地图显示,2 m分辨率的协变量在捕获准确的地形边界和小型地面的细节(例如溪流通道和山脊)方面表现更好。与使用空中图像和现场观测值相比,此处介绍的方法大大减少了绘制地图的时间,并允许掺入各种各样的协变量。它可以用于水文建模,自然资源管理,并在丘陵景观中表征土壤地球形过程和危害。
步骤2材料综合方法步骤3单材料评估FIB-SEM和激光器-FIB步骤1新材料需求步骤4小单元性能4小细胞性能步骤5 NEV细胞性能步骤6商业化
组织工程中微管结构的有效复制仍然是一个巨大的挑战。在这项研究中,通过探索2种热敏感水凝胶 - 凝集素甲基丙烯酰基(gelma)和丝晶(Sill-Floyl)(用丝晶(丝晶),研究了通过收缩机制来创建复杂的高分辨率肾小管结构的温度反应性特征(PNIPAM),以创建复杂的高分辨率管状结构。系统的研究揭示了在高温(33-37°C)上对缩小行为的精确控制,这是聚合物浓度的函数。两种水凝胶类型的水凝胶尺寸从室温(RT)降低至33°C,从RT降低至37°C的40%。萎缩的效果可将机械性能提高,使凝胶凝胶凝胶的压缩模量增加约2.8倍,silkma-pnipam凝胶在37°C下在37°C上增加5.1倍。与体积打印相结合,这些材料的分辨率为≈20%的分辨率增强,可实现≈70%的功能,从而实现了≈70%的功能。秒,带有开放通道(≈50μm)。Gelma-PNIPAM水凝胶与Silkma-PNIPAM水凝胶相比显示出更好的细胞兼容性,从而促进细胞粘附和生存能力。这项研究证明了热敏化水凝胶具有工程师复杂的高分辨率管状结构的能力,具有大量打印 - 一种有效的途径,用于制造微观环境,模仿具有开发相关体外模型的天然组织。
I。常规的台式光谱仪通常很大,并且仅限于实验室环境。随着综合光子学的发展,光谱仪的微型化导致了适用于实验室以外的更多应用,包括农业分析和水下研究[1],[2]。它还可以启用实验室芯片应用程序[3],[4],[5]。基于其工作原理,可以将集成光谱仪大致分为使用分散,窄带滤波,傅立叶变换或数值重建的类别[6]。第一个类别具有分散光学元件,它们在空间上分开不同的频率,包括echelle光栅[7]和阵列的波导格栅(AWG)[8],[9]。第二种类型使用窄带过滤器(例如环形分解器和马赫Zehnder干涉仪(MZI)[10],[11],[11],[12],选择性地将不同的光谱成分传输到不同的检测器。第三个通常称为傅立叶变换型体镜检查(FTS),其中通过在时间或空间域中转换干涉信息,使用傅立叶变形[13],[14],[15]获得频谱。最后一个类别采用了一系列具有不同光谱响应的组件,并从组合信号[16],[17]中重建光谱。它依赖于
生成高质量的艺术肖像视频是计算机图形和视觉中的重要且理想的任务。尽管已经提出了一系列成功的肖像图像图像模型模型,但这些面向图像的方法在应用于视频(例如固定框架尺寸,面部对齐,缺失非种族细节和时间不一致的要求)时具有明显的局限性。在这项工作中,我们通过引入一个新颖的Vtoonify框架来研究具有挑战性的可控高分辨率肖像视频风格转移。具体而言,Vtoonify利用了基于编码器提取的多尺度内容功能的高质量艺术肖像来利用型号的中高分辨率层,以更好地保留框架详细信息。结果完全卷积体系结构接受可变大小的视频中的非对准面孔作为输入,从而有助于完整的面部区域,并在输出中自然动作。我们的框架与现有的基于样式的图像图像模型兼容,以将其扩展到视频化,并继承了这些模型的吸引力,以使其具有柔性风格的颜色和强度控制。这项工作分别为基于收藏和基于典范的肖像视频风格转移而建立在Toonify和Dualstylegan的基于Toonify和Dualstylegan的Vtoonify的两个实例化。广泛的实验结果证明了我们提出的VTOONIFY框架对现有甲基的有效性在生成具有灵活风格控件的高质量和临时艺术肖像视频方面的有效性。代码和预估计的模型可在我们的项目页面上找到:www.mmlab-ntu.com/project/vtoonify/。
摘要:肌腱脑脊髓炎/慢性疲劳综合征(ME/CFS)是一种慢性,复杂的疾病,其特征是严重且经常使身体和精神疲劳失败。到目前为止,科学家还没有完全指出疾病的生物学原因,但它影响了全球数百万的人。为了更好地了解ME/CFS,我们将38个ME/CFS患者血浆中的代谢网络与24名健康对照参与者进行了比较。除了测量包括色氨酸及其代谢产物在内的靶向物质以及酪氨酸,苯丙氨酸,B族维生素和harbosoxanthine的测量外,这涉及一种未靶向的代谢组学方法。我们观察到几种代谢途径的显着改变,包括维生素B3,精氨酸 - 丙啉和天冬氨酸 - 天冬酰胺途径,在未靶向的分析中。与对照组相比,有针对性的分析表明,ME/CFS患者中3-羟基氰酸,3-羟基基硝酸,低黄嘌呤和苯丙氨酸的水平变化。这些发现表明ME/CFS患者的免疫系统反应和氧化应激的潜在改变。关键词:高分辨率质谱,肌电脑脊髓炎(ME/CFS),神经退行性疾病,代谢组学,靶向分析,未靶向分析,生物标志物