4D 打印是一个新兴领域,其中 3D 打印技术用于对刺激响应材料进行图案化以创建变形结构,以时间为第四维。然而,目前用于 4D 打印的材料通常较软,在形状变化过程中的弹性模量 (E) 范围为 10 −4 至 10 MPa。这限制了所得结构的可扩展性、驱动应力和承载能力。为了克服这些限制,多尺度异质聚合物复合材料被引入作为一种新型的刚性、热响应 4D 打印材料。这些油墨的 E 比现有的 4D 打印材料高四个数量级,并提供可调节的电导率,可同时实现焦耳加热驱动和自感应功能。利用电控双层作为构建块,设计和打印出一种可变形为 3D 自立式起重机器人的平面几何体,与其他 3D 打印执行器相比,在重量标准化的起重负载和致动应力方面创下了新纪录。此外,该油墨调色板还用于创建和打印平面晶格结构,这些结构可变形为各种自立式复杂 3D 形状。这些贡献被集成到 4D 打印电控多步态爬行机器人晶格结构中,该结构可承载自身重量的 144 倍。
•至关重要的核物理学: - FRIB - 高功率ECR来源和高刚度光谱仪 - EIC - 复杂的相互作用区域磁铁 - JLAB - JLAB - 中心至12GEV升级•至关重要的基本能源科学至关重要的基本能源科学 - 新颖的端站磁铁 - 超导器 - 超导器 - 超导向器•融合的融合供货量和级别的融合式tokamaks and Stellactors-尤其是Compactact tokamaks
集吸音、高刚度和各向同性弹性于一体的多功能材料越来越受到多合一应用的追捧。然而,传统的微晶格超材料(无论是桁架、壳体还是板材)通常只在一种特性上表现出色,由于结构限制而难以兼具所有特性。本文提出了一种新的附加概念——通过交织不同的晶格结构来同时增强微晶格的吸音和弹性特性。交织设计策略首先分析特定结构,引入增强结构来划分空气域,补偿局部刚度不足,并提高结构完整性。作为概念验证,重点是使用八位组桁架作为原始相,使用定制桁架作为增强相。该方法可实现高度可定制的几何配置,利用机器学习和多目标优化来实现卓越的多功能性能。实验结果表明,这些优化的微晶格克服了传统的物理限制,同时实现了宽带吸声、高刚度和弹性各向同性。宽带吸收来自精细调节的过阻尼共振响应,而卓越的弹性性能则归因于高效的负载传递和互补配置。这项工作为创新的多功能材料揭示了一种突破性的设计范式。
飞机结构在服役期间会经历严酷的条件。飞行和地面机动过程中产生的载荷通常很高,为了降低总重量,结构材料应具有高强度、高刚度和低比重。高强度材料可以将超重保持在最低限度。但是,其他特性(例如材料抗腐蚀能力)也很重要。不幸的是,飞机结构和材料的低重量和高强度可能并不总是与高耐腐蚀性相兼容,因此可能需要做出权衡。通过在设计阶段和组装阶段适当注意腐蚀,并通过仔细检查和尽早修复腐蚀损坏以及修复受损的保护系统,人们普遍认为可以将这些权衡的腐蚀后果降至最低。
陶瓷是一种脆性材料,具有高导热性和导电性,而陶瓷易碎、导电性差。然而,大多数陶瓷即使在高温下也表现出高刚度和稳定性,而大多数金属材料即使在中温下使用寿命也有限。在高温下,金属会发生微观结构变化和机械性能劣化。最常见的MMC类型是将陶瓷加入金属基体中。陶瓷增强金属复合材料预计比单相金属及其合金具有明显的优势。MMC受益于金属基体的延展性和韧性以及陶瓷增强体的高温稳定性、刚度和低热膨胀,可以满足金属和陶瓷都会独立失效的应用所需的性能[9, 10, 12-15]。
摘要。与传统光学器件相比,可展开光学器件有望通过大幅降低质量和体积需求来达到所需的性能水平,从而彻底改变宇宙观测能力。然而,这对新望远镜的机械和热设计提出了新的要求,本质上是用质量和体积来换取结构和控制的复杂性。我们汇编了设计光学空间系统时应考虑的热机械挑战,并总结了 14 个解决这些挑战的项目。严格的部署重复性要求需要低滞后,而稳定性要求需要高刚度、适当的热管理和主动光学元件。© 2020 光学仪器工程师协会 (SPIE) [DOI: 10.1117/1.JATIS.6.1 .010902 ]
AOS 空中客车 OneWeb 卫星巨型星座由 900 颗小型卫星组成,用于全球宽带互联网。AOS 选择 SpaceTech 开发和交付 1800 个太阳能电池板部署机制 SADM——每颗卫星上有两个。SpaceTech 的 AOS SADM 由 CRFP 吊杆和 SAP 发射支撑部件组成。吊杆配备了两个带弹簧铰链和用于太阳能电池板和季节性驱动器的线束。通过挤压 CFRP 吊杆,实现了航天器主体和太阳能电池板之间可用空间的挑战性要求。带有集成高强度合金带弹簧的 CFRP 吊杆由 CarboSpaceTech 制造,在部署配置中具有高刚度。电源线束直接连接到吊杆上,由于其阻力小,因此性能高。
2021 年 7 月,DLR 进行了人工失重测试活动。在专门的飞行日内,专用空客 A310 的整个 20 mx 5 m 测试区域可用于可展开高应变复合空间结构领域的 5 项实验。这里介绍的结果源自实验 No4,其中测试了 DLR 可展开 CFRP 桅杆的两种不同展开机制。这两种机制都使用新的接口概念将吊杆在展开期间和展开后以高刚度连接到卫星结构上。这两种概念在人工失重中都得到了广泛的评估,包括它们的安全展开和存放以及由此产生的界面刚度。为此,描述了飞机中的测试设置、测试计划和测试程序。最后,讨论了结果并提出了进一步开发吊杆和机制以及在人工失重下测试此类结构的建议。
基质聚合物研究了高刚度聚丙烯(PP)泡沫以在旋转造型工业中使用。范围是为市场上当前的聚乙烯(PE)泡沫提供更硬,更先进的替代品。矩阵聚合物希望突破当前产品的边界,并结合新技术以生产新材料。CBA的不同组成(化学吹动剂),各种干燥的混合物和化合物已与实验一起进入CBA反应时间和膨胀比。由493K开发的K-KORD温度记录设备可用于室内温度分析,并已与仅仪式温度标签,静态烤箱机和旋转渡轮机一起使用,以开发新材料。以上所有内容都提高了我们对这种新材料惊人潜力的理解。将该产品提供给旋转成型行业将对来自世界各地的旋转腐存型在各种应用中非常有益,我们将旋转成型的限制视为缺乏合适的聚合物。这是矩阵继续挑战的东西。
由于进化,许多生物材料已经发展出不规则结构,从而具有出色的机械性能,例如高刚度重量比和良好的能量吸收。然而,在合成材料中复制这些不规则的生物结构仍然是一个复杂的设计和制造挑战。这里介绍了一种仿生材料设计方法,该方法将不规则结构描述为构建块(也称为瓷砖)和连接它们的规则的网络。合成材料不是一对一复制生物结构,而是以与生物材料相同的瓷砖分布和连接规则生成,并且结果表明这些等效材料具有与生物材料相似的结构与性能关系。为了演示该方法,研究了橙子的果皮,橙子是柑橘家族的一员,以其保护性和吸收能量的能力而闻名。聚合物样品在准静态和动态压缩下生成并表征,并显示出空间变化的刚度和良好的能量吸收,如生物材料中所见。通过量化哪些图块和连接规则在响应负载时局部变形,还可以确定如何在空间上控制刚度和能量吸收。