抽象 - 基于石墨烯的聚合物纳米复合材料吸引了广泛的工业兴趣,因为由于石墨烯的独特传导性能,该材料的电导率可以精确控制。在本文中,我们显示了去角质方法和分散时间对聚酰亚胺/石墨烯纳米复合材料的整体电导传导的影响。一组具有不同石墨烯纳米液含量的聚酰亚胺膜是通过热弹性制备的,并进行了电表征,以评估纳米复合材料对电渗透阈值的组成的影响。研究了三种分散技术(即高剪切混合,超声探针和行星混合)发现,在每种情况下,通过增加分散时间来减少石墨烯纳米叶片的尺寸。使用高剪切混合技术获得最高的分散质量,该技术产生了0.03 wt%的电渗透阈值。
摘要:金属基纳米复合材料 (MMNC) 通常比非增强合金表现出优异的性能,这是由于实现了晶粒细化或 Orowan 强化。特别是在轻金属(例如铝和镁)中,作为基质的复合材料在机械性能方面有显著改善的潜力。在某些情况下也可以实现功能化。然而,如果 MMNC 是通过熔体冶金工艺加工的,那么挑战在于陶瓷纳米颗粒在熔体中的均匀分布。纳米颗粒的大表面积会产生很大的范德华力,需要克服这种力。此外,颗粒与熔融金属的润湿性很困难。可以通过超声波、电磁搅拌甚至高剪切施加额外的力。本文讨论了采用高剪切分散技术生产的轻金属基 MMNC 的性能。首先介绍了该工艺的不同特点和基本理论,然后通过将MMNC与其基质材料进行比较来讨论性能改进。
Puregraph®MB-EVA沥青是一种装有石墨烯的载体MasterBatch,旨在将其融合到沥青混合物中,以改善机械性能和稳定性。也可以将其添加到沥青储罐中,以创建石墨烯增强的聚合物修饰的粘合剂,而无需高剪切混合。
动机:复合层压板和纺织品所需的剪切试验改进 – 高剪切强度 – 粗糙结构需要更大的量规截面 目标:测量剪切模量和剪切强度 方法:结合现有剪切试验的吸引人的特点 – 约西佩斯库剪切 (ASTM D 5379) – 双轨剪切 (ASTM D 4255)
3. 尽可能使用渐变混合;从较低的转速/速度/剪切设置开始,并初步加入纸浆。渐变混合以获得高剪切和最佳分散。无论是通过时间增量、转速设置、其他参数还是以上所有,使用显微镜载玻片跟踪进度以监控分散发展并帮助确定何时成功分散。显微镜载玻片将显示是否已完全分散或是否存在团聚和不均匀性。如果存在团聚或存在禁区(未填充树脂/系统的口袋),则需要继续混合。注意:在跟踪显微镜时,如果您看到均匀的分散和最小和较小的团聚,但继续混合,您可能会开始看到先前建立的网络开始退化。也可能会发生重新聚集。这两种情况都表明材料被过度分散或处理。
就高温高剪切 (HTHS) 粘度而言,发动机油的主要粘度等级传统上高于 3.5 厘泊 (cP)。这包括 5W-40 等高端等级和 10W-40 等中端等级。然而,近年来,油品已转向粘度更低的机油。粘度等级 5W-30(HTHS 粘度为 2.9 cP)在欧洲市场受到欢迎并见证了显着增长。这种转变可归因于减少温室气体排放的压力越来越大。为了满足这一需求,原始设备制造商 (OEM) 现在正转向 HTHS 粘度为 2.6 cP 或更低的更轻的润滑油。向更轻的润滑油转变的目的是提高燃油效率并减少排放。通过使用低粘度油,发动机可以减少内部摩擦,从而提高整体性能并降低油耗。这一趋势反映了汽车行业为满足更严格的环境法规和促进汽车应用的可持续性而做出的持续努力。
使用MVR是熔体量速率(CM³/10分钟)MFI是熔体流量指数(G/10min)¶是聚合物熔体(G/CM³)的密度。这种转换允许在已知密度时变化使用MFI和MVR,从而在具有不同密度的材料之间使得对可容纳。评估回收物时,这特别有用,由于污染,降解或不同聚合物等级的混合而导致的密度可能会有所不同。但是,尽管MFI方便这些比较,但它们仅对聚合物的流量表征有限。两个指标中的每一个仅描绘了流曲线上的单个数据点,这些数据点在特定条件下得出,这些条件不模仿高剪切速率和典型的工业处理过程。在比较回收物时,这种限制尤其重要,因为这些材料可以在行为上表现出很大的变化,而行为并非仅由MFI捕获。
应用指南 PH-745 应保存在密闭容器中,并置于室温下备用。如果材料需要长期储存,或者容器反复长时间敞开,则应在使用前测试粘合剂的固体百分比。建议的混合起始比例为 55 至 70 重量份荧光粉对 100 重量份 PH-745。混合粘合剂时,请勿使用高速、高剪切混合方法,因为这可能会损坏荧光粉的表面。建议的混合方法是将荧光粉添加到 PH-745 中,用非金属刮刀轻轻混合,然后将密闭容器放在罐辊上,以低速(<100 rpm)搅拌 12 至 24 小时。请勿在罐中添加任何研磨介质,例如金属或陶瓷珠。混合罐的填充量不应超过 2/3,以便在罐辊上实现最佳混合。混合后,测试打印可以确认荧光粉的分散情况。如果材料混合后放置很长时间,可以通过
在室温下研究了局部微观结构对多晶 René 88DT * 高温合金样品疲劳裂纹萌生和扩展的影响。在新型共振微弯曲疲劳装置中对微型样品进行了反向循环弯曲疲劳测试。通过取向映射、扫描电子显微镜和共聚焦显微镜对表面微观结构进行同时分析,可以直接对与滑移和滑移带形成、微裂纹萌生和短裂纹扩展相关的特定微观结构位置进行实验测量。观察到的潜在机制是:在具有最高分辨剪切应力的 {111} 平面上滑移,随后在定向为高剪切并经历弹性不相容的大晶粒中优先沿孪晶边界(但不在孪晶边界)萌生微裂纹,并在相邻晶粒中具有高分辨率剪切应力的 {111} 平面上裂纹连续扩展。对许多短的非扩展裂纹的分析表明裂纹在高角度晶界处停止。