超声波电源(发电机)将 50/60 Hz 电压转换为高频电能。此交流电压施加到转换器内的圆盘状陶瓷压电晶体上,使它们随着极性的每次变化而膨胀和收缩。这些纵向振动被探头(喇叭)放大,并以交替的高压和低压超声波形式传输到液体中。压力波动将液体分子拉开,形成数百万个微气泡(空腔),这些气泡在低压阶段膨胀,在高压阶段猛烈内爆。随着气泡破裂,内爆点会产生数百万个冲击波、微流、涡流以及极端压力和温度。尽管这种称为空化的现象仅持续几微秒,并且每个气泡释放的能量很小,但产生的能量累积量却非常高。该过程是自我刺激的,因为内爆的气泡会为气泡的形成创造新的位置。传递的高剪切能量在探针尖端附近最大,并且随着距离尖端的距离增加而减小。
搅拌槽式生物反应器最初是基于传统微生物发酵罐的设计原理,严重依赖不锈钢技术。因此,搅拌槽式生物反应器中大多数鼓泡系统的设计并不适用于哺乳动物细胞培养。典型的微生物发酵罐依靠高剪切搅拌器(如 Rushton 叶轮)来破碎效率较低的鼓泡器设计中形成的气泡。再加上高气体流速,这会导致剧烈的气体分布以提供足够的质量传递。虽然大多数微生物发酵培养物(如大肠杆菌)在这些条件下都能生长良好,但哺乳动物细胞培养通常需要使用斜叶片或船用叶轮的温和混合方式,以及较低的气体剪切速率,这需要设计不同的鼓泡器 [1–3]。因此,对于现代细胞培养生物反应器而言,精心设计分布器的材料、孔径和数量、分布器的几何形状、相对于叶轮的位置、有效气体流量范围以及由此产生的操作气体入口速度至关重要。
使用高剪切模量的固体电解质被认为是抑制锂枝晶形成并同时保证电池高安全性的最有前途的方法。[9] 尽管在提高固体电解质的高离子电导率方面取得了重大进展,但固态电池在实际工业条件下,特别是高功率系统下的运行尚未实现。[10] 一旦施加的电流密度超过某个值(该值被定义为临界电流密度),锂丝(或锂枝晶)通过固体电解质的扩展将引发电池故障。[11] 当锂丝连接阳极和阴极时,锂丝的生长会导致界面物理接触失败、固体电解质机械性能下降,甚至导致电池短路。 [12] 各种固体电解质均已报道了此类失效过程,包括石榴石 Li 7 La 3 Zr 2 O 12 (LLZO)、[13] 非晶态 70Li 2 S-30P 2 S 5 玻璃、[14] 银锗矿 (Li 6 PS 5 Cl) [15] 和钠超离子导体类型(NASICON,例如 Li 1 + x Al x Ge 2 − x (PO 4 ) 3 )。[16]
温度范围为 <-55 o C 至 >300°C 以上,符合 NASA 低排气规格 MicroCoat MCT 34T71ND-2 具有独特的性能特性组合,包括高剪切和剥离强度以及方便的操作和高/低温特性,可轻松评定为 MSL1。这种吸湿性极低的粘合剂在 30 o C/85%RH 下已使用超过 1 年,可用于 MSL1 封装。MCT 34T71ND-2 是一种军用和医用微电子密封粘合剂,是一种 100% 固体单组分非导电热固性导电粘合剂,主要用于密封军用、医用、“井下”混合设备、光电子、汽车传感器和所有 LCP 封装等中热膨胀不匹配的封装。医疗应用:此配方中不存在任何成分,在任何先前的评估中会导致细胞毒性或 USP VI 测试失败。 ISO 13485 不排除材料,除非公司专门设计,在这种情况下我们需要更多地了解您的质量系统的设计。一种改进的耐高温材料。这是一种单组分系统,配方可在高温下固化,可承受 85/85 超过 3500 小时。MCT 34T71ND-2 具有几个突出的加工优势;
室温治疗快速处理强度脱皮和高剪切强度服务温度从-90°F(-68°C)到300°F(149°C)在环境衰老或化学上浸入后的强度良好的强度良好的保留良好在覆盖范围内(欧洲化学局(ECHA)(ECHA)在2016年10月11日在正常温度条件下处理第59条的处理,并在推荐的混合率时使用该胶粘剂通常会提供大约60-70分钟(20 g/dif)(20 g/div)。要键合的底物应适当处理表面处理,并没有任何污染物。将两个组件彻底混合几分钟,直到获得均匀的混合物,或从2:1 200ml双桶形墨盒中分配。对于200 mL尺寸,使用TAH 10毫米直径。x 24元素的螺旋混合喷嘴或同等的。应用混合粘合剂应用刮刀散布到适当预处理的干燥关节表面。一层粘合剂0.004至0.012英寸(0.1至0.3毫米)厚通常会提供最大的膝盖剪切强度。然而,这种粘合剂的设计为在最高0.12英寸的层中有效。(3毫米)。应用粘合剂后,应立即组装要键合的组件。即使在治愈过程中整个关节区域的接触压力也将确保最佳性能。
本研究的目的是制备和表征用于治疗前列腺癌的载多西紫杉醇 (DTX) 的靶向固体脂质纳米粒 (SLN)。通过将茴香酰胺 (Anis) 配体定位在 SLN 表面,可以与前列腺癌细胞上过表达的 σ 受体相互作用,实现了目标。通过高剪切均质化和超声波处理法制备负载 DTX 的 SLN,并通过实验设计进行优化。最佳 DTX-SLN 的平均粒径和包封率分别为 174 ± 9.1 nm 和 83 ± 3.34%。差示扫描量热法的结果表明,DTX 以无定形状态分散在纳米载体中。扫描电子显微镜 (SEM) 图像证实了纳米粒子的纳米级尺寸和球形形状。细胞毒性研究表明,游离药物、DTX-SLN 和 DTX-SLN-Anis 的 IC 50 在 PC3 细胞系中分别为 0.25 ± 0.01、0.23 ± 0.02、0.12 ± 0.01 nM,在 HEK293 细胞系中分别为 20.9 ± 3.89、18.74 ± 7.43 和 14.68 ± 5.70 nM。与 DTX-SLN 和游离药物相比,靶向 DTX-SLN-Anis 对前列腺癌细胞的作用更有效。本研究的结果表明,靶向 SLN 中装载的抗癌药物可能是一种有前途的癌症治疗方法。此外,进行体内研究将对这些发现进行补充。
摘要 - 最常见的材料之一是具体的。混凝土由于其高抗压强度以及其他好处,例如防水性,低维护成本,易于成型,成型尺寸和形式,低制造能源消耗等等,因此优于其他建筑材料。某种形式的拉伸加固对于混凝土是必需的。在这项研究中,将石墨烯添加到M30级的混凝土中,以提高其分裂的拉伸强度,抗压强度和抗裂纹时的抵抗力。“高剪切去角质”是混合石墨烯和水的过程的术语。石墨烯和混凝土之间存在明显的差异。用石墨烯折叠的混凝土还降低了“碱 - 硅基反应”。这项研究的目的是使用水泥复合材料来研究石墨烯及其衍生物。在这项工作中采用的石墨烯中的氧化硅官能团被聚合并使与水泥水合物的化学相互作用变得无效。石墨烯的另一种用途是作为抗腐蚀覆盖物。我们正在测试地石墨烯的不同百分比-0.5%,1.0%,1.5%和2.0%的水泥重量 - 在混凝土样品中,尺寸为150 x 150 x 150毫米的立方体,横梁和500 x 100 x 100 mm的横梁。将结果与常规水泥混凝土的结局进行了比较。在添加不同百分比的石墨烯后的7、14和28天后检查了混凝土标本的机械特性。“混凝土的最佳强度”是结果。
经导管主动脉心脏瓣膜血栓形成(THVT)会影响长期瓣膜耐用性,经瓣压力梯度和小叶迁移率。在这项研究中,我们进行了高保真流体结构的相互作用模拟,在具有较大主动脉直径(THVT模型)的通用模型中进行拉格朗日粒子跟踪,具有和没有新的sinus,这与未受影响的TAVI患者的模型进行了比较(对照模型)。血小板激活指数,以评估由高剪切应力引起的血栓形成的风险,然后流停滞。粒子追踪表明,与对照模型相比9% / -34。1%)。在THVT模型的天然窦中停滞颗粒显示出比对照模型更高的血小板激活指数(+39。6%没有新辛,+45。3%的新sinus)。最高的激活指数存在于代表THVT患者的较大主动脉的新主动脉中停滞的颗粒(+80。与对照相比2%)。 这项流体结构相互作用(FSI)研究表明,较大的主动脉与鼻窦冲洗效率较低,结合使用停滞颗粒(尤其是在新sinus中)的血小板激活风险较高。 这可以解释(a)与没有新sinus的手术阀相比,经导管瓣膜中血栓形成的发生更高,并且(b)新sinus作为TAV中血栓的普遍区域。与对照相比2%)。这项流体结构相互作用(FSI)研究表明,较大的主动脉与鼻窦冲洗效率较低,结合使用停滞颗粒(尤其是在新sinus中)的血小板激活风险较高。这可以解释(a)与没有新sinus的手术阀相比,经导管瓣膜中血栓形成的发生更高,并且(b)新sinus作为TAV中血栓的普遍区域。较大主动脉根的术前鉴定可能有助于更好地评估患者的风险评估,并改善患者特异性抗癌疗法的选择。
Aurubis是欧洲最大的铜生产商,研究了泡沫浮选从浸出的残留物中恢复石墨的,该残留物含有含有专利的碳材料,尚待黑色质量质量贴胶流量表产生的碳材料。已经尝试了多年黑质量(BM)的浮选,尤其是作为“原始黑色质量”的前浸水材料分离步骤,目的是减少下游处理的材料质量。然而,由于有机电解质材料的夹带和剩余的涂层,呈现NMC-CATHODE材料和残留的Cu/Al Foil颗粒疏水,通常约有10-50%的有价值金属向石墨浓缩物报告(Vanderbruggen,2022)。尝试通过旨在消除残留粘合剂和创建新鲜表面的损耗步骤(高剪切)进行改进的尝试取得了成功,但这些有价值的材料报告仍然很大,但仍有大量的材料报告(Vanderbruggenet。Vanderbruggenet。al。,2022)。其他人试图使用加热步骤消除粘合剂,500 c热解,多达17%的有价值的材料仍向随后的浮选浓度报告(Zhang,et。al。,2019年)。考虑到这一挑战,Aurubis选择在其湿度铝流量表产生的石墨残基上追回石墨恢复,该残基首先开创了锂,并提高了电池材料的高回收率,即阴极活动材料(CAM)-EP4225697 B1。分别可以在图1和表1中看到典型的粒度分布(PSD)和该残基的组成,并分别可以看到标记为批次1到3的残基。富含石墨的残基,即Aurubis的浮选饲料的p80约为20µm,碳含量为35-40%,典型电极成分(例如锂金属氧化物(LMO)LMO)LI,Ni,Ni,Co和Mn的总数为1%。高石膏含量为10-12%,是Aurubis过程中使用的湿法流膜流量表步骤的结果。此石墨残基特性(大小和组成)使其成为浮选的理想选择。实际上,在浮选饲料上进行的矿物解放分析(MLA)表明,大约70%的碳被完全释放,25%的二元二元锁定主要用石膏锁定,只有5%的三元颗粒主要与铝和铜颗粒相关。
纳米颗粒在接口处。没有纳米颗粒,系统将在系统中发生宏观分离,这两个阶段将根据其密度而定。[5,6] 2000年代初期证明了Bijels生产的第一个程序。第一个实验成功的方法是所谓的热旋缺失分解。[7]在2015年,Haase和同事改善了这种方法,开发了一种导致旋律分解的方法,该方法依赖于从三元混合物中去除溶剂的方法。[8]在这种情况下,将两个易碎的液体与溶剂混合在一起,该溶剂具有使它们相互溶于的能力。将所谓的混合物注入能够提取溶剂的连续相中,其突然去除会诱导两个剩余流体的旋律分解。最近,Clegg Research Group定义了一种越来越简单,更快的生产协议,涉及所涉及的组件之间的直接混合。[9]以这种策略分散到两种不混溶的液体中,需要一些表面活性剂。以这种方式,可以偏爱面部表面的不同局部曲率并稳定结构。与旋律分解不同,这里的比杰尔是通过应用高剪切速率形成的,因此,在初始阶段,产生了二元混合物的液滴。去除剪切物后,粗糙的过程开始将颗粒[1]在接口处捕获[1],直到融合融合为止。最近的Huang等人。同时,表面活性剂施加了液态液接触表面的局部曲率,有助于形成特征性的双连续结构。[1,2,10]仅使用简单的涡流混合简化了生产方法。这样做,他们采用了不同的分子量表面活性剂的组合来稳定不同的局部曲率,以与两个液相之间的界面稳定。在这种情况下,形成比耶尔的唯一必要条件是使用具有不同分子量的聚合物的混合物和足够高的颗粒来形成双连续性的互面膜间堵塞的乳胶凝胶。在最近几年中,比杰尔(Bijels)在许多工业领域表现出了有希望的应用,例如电池,燃料电池和许多其他领域,其中具有控制结构的多相材料引起了任何关注。[11]从医学角度来看,使用Bijels的主要优势居住在可能获得系统