6 一般事项 (1) 承包商应提供所使用的高空作业平台。 (2)高空作业车的操作应由承包商进行。 (3)承包商应负责将货物运至使用现场和运离使用现场。 (4)承包商应承担工作期间和装卸时使用的燃料费用。 (5)在开展工作前,必须向主管部门提交高空作业平台操作人员的驾驶执照副本。
高效的硬件-细胞通信对于理解细胞状态和控制细胞至关重要,是推进下一代人机界面的关键途径。在这里,我们提出了一种基于天然纤维素的节能神经装置,解决了传统接口通信硬件的局限性,特别是在材料生物相容性和生物信号匹配方面。基于纤维素的装置有效地模拟了生物突触连接的可塑性,并在低至 10 mV 的连续脉冲刺激下表现出学习行为。值得注意的是,它表现出卓越的数模转换性能,最低功耗为 0.1 nJ,有助于实现高效的界面生物信号匹配。此外,引入了一个分子级模型来阐明电刺激引起的纤维素分子内极性键的旋转。这种旋转改变了材料的相对介电常数,揭示了数模转换能力和类似神经的行为。此外,透明纤维素薄膜既可作为介电层,又可作为机械支撑,使设备能够在各种曲率下保持功能稳定性。这项研究中,基于纤维素的灵活且生物相容性的神经装置不仅可以有效地模拟突触,而且由于其低功耗信号转换,有望在脑机接口应用中实现有效的生物信号匹配。
内存单元尺寸的不断减小提高了内存密度并降低了功耗,但也影响了其可靠性。Rowhammer 攻击利用这种降低的可靠性来诱导内存中的位翻转,而无需直接访问这些位。大多数 Rowhammer 攻击都以软件完整性为目标,但最近的一些攻击表明它可用于破坏机密性。延续这一趋势,我们在本文中观察到 Rowhammer 攻击与内存瞬时功耗密切相关。我们利用这一观察结果设计了 HammerScope,这是一种基于 Rowhammer 的攻击技术,用于测量内存单元的功耗。由于功耗与内存的活动水平相关,因此 HammerScope 允许攻击者推断内存活动。为了展示 HammerScope 的攻击能力,我们使用它发起了三次信息泄露攻击。我们首先展示了 HammerScope 可用于破坏内核地址空间布局随机化 (KASLR)。我们的第二次攻击使用内存活动作为 Spectre 攻击的隐蔽通道,使我们能够泄露操作系统内核的信息。最后,我们演示了如何使用 HammerScope 进行网站指纹识别,从而泄露用户隐私。我们的工作证明了找到 Rowhammer 攻击的系统解决方案的重要性。
Harutoshi Yamada、Teruki Tsurimoto(筑波大学纯粹与应用科学研究生院)、Sirawit Pruksawan 和 Naito(筑波大学纯粹与应用科学研究生院、国家材料科学研究所)
1. 参加者应具备的资格 (1) 参加者不得有《预算会计审计法》第70条规定的情况。此外,未成年人、被监护人或接受协助的人,即使已经取得订立合同所必需的同意,也属于同一条款内有特殊事由的情况。 (2)不属于《预算会计审计法》第七十一条规定情形的。 (3)2022、2023、2024年度防卫省竞争性投标资格(各省厅统一资格)“提供服务等”类别中被评为D级以上,且具备参加关东、甲信越地区竞争性投标资格的,或者,如果其不具备参加竞争性投标的资格,但在投标之日前已经通过竞争性投标资格审查,并在竞争性投标资格名单中登记,并被认定具备参加竞争性投标资格的。 (4)该人目前不属于防卫省长官房长官、防卫政策局局长、采购技术后勤局局长(以下称为“防卫省暂停权限”)或海上自卫队参谋长根据“设备等及服务采购暂停提名等指南”采取的暂停提名措施的对象。 (5) 与前项规定暂停指定对象者有资本或人事关系,且无意与国防部签订与其同类物品买卖、制造或承包服务契约者。 (6)目前处于暂停提名状态的人员原则上不允许进行分包。但有关部会暂停提名权机关认定确有不可避免的情况时,不在此限。
建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术
1. 启动 Tera Term 并选择 USB Serial Port 2. 将串口设置为 115200,然后按下 AI Reset 按钮(下图中位置‘ 〇 ’)。 3. 发出“UP”的声音以确认识别
学士:首尔国立大学电子工程学士 (1996 - 2000) 硕士:首尔国立大学电子工程学士 (2000 - 2002) 博士:首尔国立大学电子工程学士 (2002 - 2006) 工作经历
日期 版本 说明 2009 年 3 月 1.2 更新了图 33.、图 34. 和表 35. 。2009 年 9 月 1.3 添加了表 93。更新了 BOM、表 28.、表 29.、表 34.、表 46.、表 53.、表 61.、表 87.、表 101.、表 113.、表 115.、第 6.3.4.1、9.1、9.3 13.3.3、29.1.2、29.2.2、29.3.2 和 30.1 节。简化了二进制数的书写方式和寄存器位的表示方式。2010 年 4 月 1.4 更新了图 9.、图 10.、图 30.、注意:第 87 页、图 46.、图 51. 和图 52。更新了第 2.1 节、第 12.3 节、第 13.3.1 节、表 14.、表 15.、表 27.、表 58.、表 111.、表 114. 和表 115。更新了第 29 章中的 BOM 信息。2010 年 7 月 1.5 更新了第 77 页的 6.3.5.1、第 109 页的表 57、第 111 页的表 58、第 150 页的表 88 和第 176 页第 24 章中的人体模型类。2010 年 8 月 1.6 添加了 RoHS 声明并更新了第 150 页的表 88。
图2显示了两个简化的热失控序列:在左侧,右侧和右侧的序列,而没有早期气体排气。在早期气体排气时,细胞外壳会在整个热失控之前的一段时间内打开并释放气体。在这些示例中,我们假设内部细胞衰竭会导致意外连续的局部加热,然后过热,最终融化了阳极和阴极之间的内部分离器。一旦分离器在细胞中本地的某个地方失败,阳极和阴极侧都会直接接触。现在同时发生了几种效果:接触中的活动材料在强烈的放热反应中直接反应,这可能取决于使用的细胞化学。此外,电池电压下降至零,并且电荷载体不受控制地从一侧移到另一侧,随后是加速的局部热产生。生成的热量融化了更多的分离器,因此此事件在整个单元格中传播为完整的热失控,并产生强大的气体,并且电池室中的压力增加。取决于细胞化学及其反应性,整个过程可能只需几秒钟,例如对于高镍细胞(例如,nmc),也可以在无镍细胞(如LFP)的分钟范围内。还有其他因素会对这种行为产生影响,例如细胞的外形或活动材料的涂层厚度。