在 CPGS LM6000 PF 中对氢气进行临时测试燃烧时,气态氢通过高压气瓶拖车运送到现场。拖车通常可携带约 250-400 公斤可用氢气,具体取决于压力,压力范围约为 165-500 barg(2,400-7,250 psig)。根据美国机械工程师协会 (ASME) 1 型储存容器的重量限制,传统长管拖车在 250 barg(3,625 psig)以下运行,但运输部 (DOT) 允许使用高压容器。这些拖车类型越来越普及,但目前传统的低压类型仍然更为常见。由于所需容器数量众多,而高压容器的可用性有限,本研究考虑使用低压容器。
摘要 本文将介绍韩国航空宇宙研究院经济实惠且环保的太空运输计划所采用的增材制造液体火箭发动机部件,并介绍推力室和其他部件的当前发展状况。已采用增材制造技术制造了多个推力室部件,即激光粉末床熔合 (L-PBF) 和粉末定向能量沉积 (p-DED),L-PBF 的材料为纯铜、Inconel718 和 CuCrZr,p-DED 的材料为铝青铜和 Inconel 625。并对制造的推力室进行了点火试验。用于 30 kN 推力液体火箭发动机的涡轮泵也正在设计和计划通过增材制造进行制造。此外,还评估和验证了增材制造对发动机喷嘴延伸、高压容器、热交换器和推力框架的可行性和适用性。
锂离子电池技术在生态经济和新能源的开发方面具有出色的优势。作为锂离子电池的核心成分,阳极材料在电池的性能行为中起着重要作用,作为细胞能量密度,工作潜力等。如今,石墨被认为是锂电池最先进的阳极材料。它具有低锂插入潜力的优点,以确保高输出电压;在充电和排放过程中的结构稳定,并且周期寿命较长;高电子电导率;自然资源丰富等等而,石墨材料中的杂质含量会导致电池降解,并极大地影响稳定性和生命周期。使得杂质的确定对于锂电池生产者的质量质量/QC要求至关重要。但是,石墨材料可以承受高温,高度耐腐蚀性,结构稳定,这使样品制备成为挑战的挑战。在这里,提出了一种微波消化方法,用于准备石墨材料,以作为ICP -OES或ICP -MS进行进一步的元素分析。使用高性能的气密高压容器与M6微波消化系统结合使用,可以彻底消化石墨。
为目标的材料合成实验并寻找新材料。显示了每个项目获得的直接结果的摘要。 [1] AT 4 我们根据结果研究了合成新物质的可能性。在此过程中,我们关注的是 A 3 T 4 Al 12,它是一种外围材料,尽管它与方钴矿结构不同。例如,在Gd 3 Ru 4 Al 12 中,电子自旋表现出螺旋磁序,有人指出它可能与传导电子结合而表现出拓扑量子磁性[1-2]。以此报告为参考进行进一步研究后,我们预计Os取代产物可能会表现出更明显的拓扑量子磁性,因此我们继续反复试验以确定是否可以合成它。 2002年报道了这种材料的合成[3],但尚未获得单晶,预期的拓扑量子磁性也是未知的。 通常,提拉法和浮区法等提取方法用于生长金属间化合物晶体,但由于使用剧毒原料(本实验中使用Os),因此无法使用这些方法。 。替代助焊剂和化学品运输方法已尝试了一年多,但没有成功。最终,我们设计了独特的高压反应容器,并利用高压自熔法成功生长了Gd 3 Os 4 Al 12 晶体(图1)。 使用Ta胶囊(外径5.9mm×高7.0mm×厚度0.2mm,Sunric制造)作为高压容器,并且使用BN内胆以避免与样品粉末直接接触。 BN内层是通过切割BN成型品(圆棒、直径5.4mm×长度100mm、Denka N-1)而制作的。 BN内衣预先在真空中1500℃和氮气中1900℃下进行热处理以去除杂质。将原料粉末填充Ta胶囊并密封的工作均在手套箱中进行,以防止Os粉末氧化。
美国机械工程师学会 (ASME) 已更新其在 asme.org 上的数字交付方式,影响之前购买的规范和标准 PDF。用户需要通过“我的帐户”中数字下载页面上的新链接重新下载在 2024 年 4 月 15 日之前购买的文档。要随时了解更新,用户可以注册电子邮件通知。ASME 第 VIII 部分第 2 部分对于设计和制造压力容器至关重要。它是美国机械工程师学会锅炉和压力容器规范的一部分,为制造压力容器提供指导。ASME VIII 第 1 部分和第 2 部分是 ASME 锅炉和压力容器规范的两个部分,每个部分都为设计和建造压力容器提供指导。主要区别在于设计裕度和材料允许应力的方法。第 2 部分采用了较低的设计裕度,因此与第 1 部分相比,材料允许应力更高。ASME 第 VIII 卷第 1 部分和第 2 部分之间的主要区别包括: - **范围**:涵盖压力容器的设计、制造、检验、测试和认证(第 1 部分),而第 2 部分则涵盖压力容器设计和建造的替代规则。 - **设计方法**:基于规则设计方法(第 1 部分),而第 2 部分则强调分析设计方法。 - **安全系数**:使用固定安全系数(第 1 部分),而第 2 部分则允许使用基于风险的安全系数,从而可能降低材料成本(第 2 部分)。与第 2 部分相比,ASME 第 VIII 卷第 1 部分涵盖更为保守的材料要求和规定的测试要求,从而允许使用更先进的材料并考虑断裂力学。下表总结了 ASME 第 VIII 卷第 1 部分和第 2 部分之间的主要区别:| 特点 | ASME 第 VIII 卷第 1 部分 | ASME 第 VIII 卷第 2 部分 | | --- | --- | --- | | 范围 | 涵盖压力容器的设计、制造、检查、测试和认证。| 压力容器设计和建造的替代规则。允许在设计方法上更灵活。| | 设计方法 | 基于规则设计方法。| 强调分析设计方法。| | 设计公式 | 为各种组件规定的公式和规则。| 允许使用更先进的分析方法和设计计算的灵活性。| | 安全系数 | 使用固定安全系数。| 允许使用基于风险的安全系数,从而可能降低材料成本。| | 材料要求 | 更保守的材料要求。| 允许使用更先进的材料并考虑断裂力学。| | 接头效率 | 固定接头效率值。| 根据接头类型和检查方法考虑接头效率。 | | 测试要求 | 规定的测试要求。| 提供基于风险分析和检查结果的测试灵活性。| | 疲劳分析 | 简化的疲劳分析。| 更详细的疲劳分析方法。| | 抗震设计 | 有限的抗震设计规定。| 抗震设计的具体规定。| | 风和外部载荷 | 规定的风和外部载荷公式。| 允许使用更先进的分析方法和设计计算灵活性。设计外部载荷的过程涉及考虑各种因素,包括风和外部压力。为确保安全,在某些情况下会应用更保守的安全系数。有限元分析 (FEA) 可用于更准确地评估这些力。但是,它在某些设计方法中的使用受到限制。在 ASME 第 VIII 条第 1 部分和第 2 部分之间做出选择时,必须考虑所设计压力容器的具体要求。第 1 部分提供了一种广泛使用的更直接的方法,而第 2 部分为需要精细安全系数的特殊应用提供了更大的灵活性。在 ASME 第 VIII 部分第 2 部分中,材料的允许应力是根据材料特性、设计条件和安全裕度确定的。这种方法可以根据每个容器的独特要求更精确地确定允许应力。与提供固定允许应力值的第 1 部分不同,第 2 部分可以对这些因素进行定制评估。ASME 规范中规定的最大允许应力值随温度而变化。在第 1 部分中,根据规则进行设计,安全系数为 3.5,60,000 psi 抗拉强度材料的最大允许应力值为 17,142 psi。在第 2 部分中,根据分析进行设计,安全系数较低,为 2.5,相同材料的最大允许应力变为 24,000 psi。由于要求更严格,一些公司更喜欢为其压力容器采用第 2 部分标准。其他公司可能会根据成本考虑在第 1 部分和第 2 部分之间进行选择。制造商通常为低压容器选择第 1 部分,为高压容器选择第 2 部分。在比较 ASME VIII 第 1 部分和第 2 部分的成本时,必须考虑材料和人工方面的节省是否超过工程、质量控制和管理方面的额外费用。传统上,大型和厚容器适合第 2 部分,但随着 2017 年版第 1 级容器的引入,更多场景现在可以从成本降低中受益。第 2 部分需要更少的加强垫,并允许使用更薄的喷嘴锻件,从而节省更多成本。总之,如果您是从事压力容器设计的专业人士,了解 ASME 第 VIII 部分第 2 部分至关重要。PetroSync 的培训计划为寻求压力容器设计专业知识的专业人士提供全面的学习机会,帮助他们做出明智的决策并确保安全高效的运营。通过将知识扩展到 ASME 第 VIII 部分第 2 部分之外,包括 PetroSync ASME 第 VIII 部分培训,个人可以进一步提高技能并始终站在行业发展的前沿。