4.1 性能规格 ...................................................................................................................... 6 4.2 环境规格 ...................................................................................................................... 6 4.3 法规合规性 ...................................................................................................................... 7 4.4 物理尺寸 ...................................................................................................................... 8 4.5 可靠性 ...................................................................................................................... 8 4.6 耐久性 ...................................................................................................................... 8
面临高风险并在纯数字领域运营的组织(例如计算机安全和许多金融服务)必须满足两个相互矛盾的目标:它们需要大规模快速地识别数字威胁,同时还要避免自动化处理导致的错误。对高可靠性组织的研究发现,要同时实现这些目标面临多重挑战,因为自动化通常会使组织的运营“失去意识”,无法从容应对高风险领域不断变化的复杂情况。在数字运营中,一个特殊的挑战来自“框架问题”,即算法无法适应其开发人员最初的认知框架中未确定的环境。在一家计算机安全公司 (F-Secure) 内进行了一项探索性、理论生成案例研究,以研究在数字领域行动的组织如何通过缓解框架问题来实现高可靠性。本文研究了运营的认知和实用特征的数字化组织,以及这些特征为应对框架问题而做出的安排。集体正念被认为是在这样的社会技术环境中出现的,通过精心分层的系统组合(人类)正念和(数字)无意识操作,而组织的核心操作仍然是数字化和算法化的。研究结果表明,迄今为止尚未探索的可靠性挑战
注:T J 为元件的最大额定结温。> (T J -10) o C (T J -50) o C 至 (T J -10) o C < (T J -50) o C 其他类型 > (T J -10) o C (T J -50) o C 至 (T J -10) o C < (T J -50) o C 三端双向可控硅类型 > (T J -10) o C (T J -50) o C 至 (T J -10) o C < (T J -50) o C 晶闸管/SCR 类型 > (T J -10) o C (T J -50) o C 至 (T J -10) o C < (T J -50) o C 齐纳型二极管 > (T J -10) o C (T J -50) o C 至 (T J -10) o C < (T J -50) o C 电压参考>(T J -10)O C(T J -50)O C至(T J -10)O C <(T J -50)O C瞬时抑制器>(T J -10)O C(T J -50)O C TO(T J -10)O C <(T J -10)O C <(T J -50)O C Power Rectifier>(T J -10)O C(T J -10)O C(T J -10)O C(T J -50) >(T J -10)O C(T J -50)O C至(T J -10)O C <(T J -50)O C小信号二极管>(T J -10)O C(T J -50)O C(T J -50)O C TO(T J -10)O C <(T J -50)O C <(T J -50)O C Transistors>(T J -50) -10) o C (T J -50) o C 至 (T J -10) o C < (T J -50) o C FET
产品概述 NSi810x 器件是与 I 2 C 接口兼容的高可靠性双向隔离器。NSi810x 器件符合 AEC- Q100 标准。NSi810x 器件通过 UL1577 安全认证,支持多种绝缘耐压(3.75kVrms、5kVrms),同时在低功耗下提供高电磁抗扰度和低辐射。NSi810x 的 I 2 C 时钟高达 2MHz,共模瞬态抗扰度 (CMTI) 高达 150kV/us。NSi810x 器件的宽电源电压支持直接与大多数数字接口连接,易于进行电平转换。高系统级 EMC 性能增强
高可靠性组织 (HRO) 需要合作来应对超越组织边界的风险。HRO 文献尚未研究创建组织间可靠性的挑战,而协作文献可以进一步探讨利益相关者的优先事项如何在协作中占据主导地位。本研究结合这些文献,以确定高可靠性协作 (HRC) 的不断增长的领域。根据两年的社区紧急协作民族志研究,该研究认为,交流翻译构成了 HRC,并有助于理解 HRO 和非 HRO 属于共享协作框架。这些翻译对于创建可靠性是必要的,但也需要在协作利益相关者之间建立协商秩序。本研究发现,遏制和控制利益相关者可以成为协作的激励因素,并且协作决策受到利益相关者对紧迫性的要求的影响。关键词:跨组织协作、高可靠性组织、沟通作为组织的构成要素、应急管理、组织沟通
4.1.6 可追溯性和同质性。除选项 D 外,所有设计谱系均具有可追溯到制造商单个晶圆的有效设备批次;所有其他元素和材料均可追溯到其制造商和进货检验批次。设计谱系 E 和 R 具有同质材料。此外,扫描石英晶体可追溯到石英棒和高压釜批次的加工细节。Microchip 定义的生产批次是所有已装配并作为单个组制造的振荡器。单个批次日期代码的最大可交付数量为 150 个单位。超过 150 个单位的订单数量将以多个批次日期代码交付,交货间隔为 3 周。如果适用,每个生产批次将配备同质材料,然后将其分配到多个批次日期代码版本中以满足可交付订单数量。订购时,除非采购订单另有说明,否则将在生产批次中的第一个构建批次上执行 C 组检查、批次资格和/或 DPA。
4.1.6 可追溯性和同质性。除选项 D 外,所有设计谱系均有同质且可追溯至制造商单个晶圆的有源器件批次。扫描石英晶体可追溯至石英棒和高压釜批次的加工细节;但是,多个批次的未镀层晶体、底座和盖子可以组合成单个密封晶体制造批次。仅对于设计谱系 E 和 R,无源元件、晶体和材料可追溯至其制造批次。制造批次和日期代码信息应通过 TCXO 序列号记录每个组件和制造这些 TCXO 所用的所有材料。Microchip 定义的生产批次是所有已组装和制造为单个组的振荡器。具有单个批次日期代码的最大可交付数量为 100 个单位。超过 100 个单位的订单数量将以多个批次日期代码交付,交付间隔为 4 周。如果适用,每个生产批次将配备同质材料,然后将其分配到多个批次日期代码构建中以满足可交付订单数量。订购时,除非采购订单另有说明,否则将在生产批次中的第一个构建批次上执行 C 组检查、批次资格和/或 DPA。
摘要 — 为满足对小型天线、更高性能和更低成本的需求,大多数下一代架构都要求更高的集成电路 (IC) 芯片集成度。与传统封装配置相比,2.5D 和 3D 等先进芯片封装技术提供了更高的芯片兼容性和更低的功耗。鉴于这些优势,采用先进封装是不可避免的。在先进封装中,铜柱互连是一项关键的支持技术,也是下一个合乎逻辑的步骤。该技术提供了多种优势,包括提高抗电迁移能力、提高电导率和热导率、简化凸块下金属化 (UBM) 和提高输入/输出 (I/O) 密度。铜柱允许的细间距有助于该技术取代焊料凸块技术,后者的最小间距约为 40 微米。更细的间距允许更高的 I/O 数量,从而提高性能。在本研究中,成功展示了在高密度中介层上超薄单片微波集成电路 (MMIC) 氮化镓 (GaN) 细间距铜柱倒装芯片组件的组装。使用 150 毫米间距铜柱倒装芯片,评估了有机印刷电路板 (PCB) 和硅中介层的组装工艺,并评估了化学镀镍浸金 (ENIG) 和共晶锡铅焊盘表面处理。对于 2D/2.5D/3D 组装工艺开发,使用了标准的内部拾取和放置工具,然后进行大规模焊料回流,最后进行底部填充以进行可靠性测试。互连稳健性由芯片拉力强度、助焊剂冲压调查和横截面决定。完成了 GaN 铜柱倒装芯片 2D 组装的完整可靠性和鉴定测试数据,包括 700 次温度循环和无偏高加速温度/湿度应力测试 (UHAST)。将铜柱技术添加到 GaN MMIC 芯片中,将 GaN Cu 柱技术集成到 2.5D/3D 封装技术中,并在中介层级评估 GaN Cu 柱互连可靠性都是这项工作的独特之处。
摘要 高度可靠的无铅合金,商业名称为 Innolot,可在高温下工作,是一种锡-银-铜 (SAC) 冶金系统,其中添加了其他元素来硬化合金并提高其蠕变强度,从而显着提高焊点的可靠性。与传统的 SAC 合金相比,在温度循环测试 (TCT) 的基础上,特性寿命可以从 -40°C 延长到 +125°C,甚至延长到 150°C。汽车行业的组件越来越需要更高的可靠性,以满足安全相关和新兴应用的需求,例如高级驾驶辅助系统 (ADAS)。降低成本的要求要求采用新方法来优化焊接工艺和材料。由于当前的回流工艺更喜欢氮气气氛,以便在高可靠性焊接中减少缺陷,因此我们的研究重点是部分和/或完全改变空气焊接工艺。此外,我们还研究了不同表面处理(例如化学锡、NiAu 和 Cu OSP)以及改进的合金成分对焊接性能的影响。除了对各种组件进行初步特性分析外,还报告了 Heraeus Reliability1 印刷电路板的可靠性测试以及从 -40 到 +150°C 的温度循环测试(最多 2500 次),并讨论了由此产生的故障模式。此外,本文还介绍了通过工艺和/或材料优化降低成本的潜力,同时不会降低此类汽车应用的高可靠性性能。关键词 ADAS、汽车安全应用、成本效益、高可靠性焊料、Innolot。