低频噪声测量仪器 (LFNM) 是用于表征各种设备的工具 [1]。它应用于许多技术,例如半导体 [2, 3]、微电子材料 [4–10]、电化学设备 [11]、光电探测器 [12–18] 以及其他材料 [19–21]。在本研究中,一些特殊放大器 (超低噪声放大器 - ULNA) 被广泛使用。它们的性能还用于检测技术 [22, 23](作为传感器信号调节中的前置放大器)或其他低噪声仪器的特性分析 [24–27]。然而,这种放大器的设计需要对其组件进行噪声分析并选择无源和有源元件的配置。首先,应该在双极结型晶体管 (BJT) 和场效应晶体管 (FET) 技术之间进行选择。 BJT 的特点是电压噪声较低,电流噪声较高,这是由高基极电流引起的 [26]。在这种情况下,BJT 输入电流噪声随着基极电流的增加而增加,基极电流是将晶体管的工作点设置在有源区并获得高增益所必需的(电流增益系数也取决于基极电流)。使用这种技术,可以获得较低的放大器输入阻抗。然而,这些放大器需要在交流电中使用不稳定的电解电容器
随着世界各地的第五代(5G)网络的引入,已经发布了几个MM波频段供商业用途。与第四代(4G)中使用的相比,这些频段提供更宽的带宽并增加空间重复使用。 此外,改进的孔径与波长比允许在降低的外形尺寸中实现相位的阵列天线系统(PHAA)[1]。 所有这些方面都将有助于满足不断增加的数据吞吐量所设想的需求。 特别是,分阶段阵列允许将波聚焦在非常狭窄的光束中。 光束可以通过控制单相移位来以电子方式进行电导。 这些系统的瓶颈是提供精确相移的困难。 因此,目前非常感兴趣的精确相位变速器,具有低消耗,足够的面积职业和相关收益的设计。 文献中已经提出了几种设计,并且它们以不同的方式实施。但是,主要区别在于被动和主动的区别。 被动相位变速器[2] - [4]在高插入损失和开销面积的费用下实现高线性。 相反,活跃的线性具有较低的线性[5] - [9],但是,紧凑型解决方案,低损耗(或增益)的可能性以及可以用于振幅锥度[10]的增益调整,使后者最喜欢的候选者用于MM-Wave Phaas。 在本文中,介绍了IHP BICMOS技术制造的两个主动相位变速器的设计,一种旨在高增益,另一种用于低区域职业。相比,这些频段提供更宽的带宽并增加空间重复使用。此外,改进的孔径与波长比允许在降低的外形尺寸中实现相位的阵列天线系统(PHAA)[1]。所有这些方面都将有助于满足不断增加的数据吞吐量所设想的需求。特别是,分阶段阵列允许将波聚焦在非常狭窄的光束中。光束可以通过控制单相移位来以电子方式进行电导。这些系统的瓶颈是提供精确相移的困难。因此,目前非常感兴趣的精确相位变速器,具有低消耗,足够的面积职业和相关收益的设计。文献中已经提出了几种设计,并且它们以不同的方式实施。但是,主要区别在于被动和主动的区别。被动相位变速器[2] - [4]在高插入损失和开销面积的费用下实现高线性。相反,活跃的线性具有较低的线性[5] - [9],但是,紧凑型解决方案,低损耗(或增益)的可能性以及可以用于振幅锥度[10]的增益调整,使后者最喜欢的候选者用于MM-Wave Phaas。在本文中,介绍了IHP BICMOS技术制造的两个主动相位变速器的设计,一种旨在高增益,另一种用于低区域职业。本文的其余部分如下组织。第二节描述了两个VM的架构。第三节分析了这两种设计。第四节对测量结果的评论,第五节总结了本文。
空间碎片既由天然和人体制成的物体组成,有些是在地球轨道上的,而另一些则穿过深空。小行星可能代表近地球和深空碎片的一种形式。在本文中,我们报告了南半球的一系列小行星观察。我们表明,阿波罗和阿特族类小行星代表了可能危险性质的另一种形式的深空碎片,这些碎片可能是绕航天器和/或基于地球的位置。我们还展示了一些操作挑战,设施的类型以及地理多样性的重要性,也就是说,对于检测,观察和表征小行星,尤其是PHA的表征所必需的。多年以来,太空机构和机构在北半球使用高增益射频天线和光学望远镜(GSSR,Arecibo,Arecibo,catalina,catalina,catalina,pan-starrs,atlas和linear and atlas and linear and linear and linear and linear and and and and System cormitation System easticaly Syperation Smasies easteriational Smasies easteration Smasies easteriated and and and sosity的层次,都使用高增益频率天线和光学望远镜观察到了太空机构和机构(NEOS)附近和监测。小行星和各种人类制成的物体直到进入北部的天空之前。位于澳大利亚的南半球小行星雷达计划(SHARP)2)在位于堪培拉深空通信络合物(CDSCC)上的70或34 m梁波导天线上使用可用的天线时间,将多普勒补偿的连续电台传输到2.114 GHz(14.2 cm)和7.1594和7.1594594594594594.15945。在澳大利亚的Narrabri的64 m Parkes或64 m Parkes或6 m×22 m的澳大利亚望远镜紧凑型阵列(ATCA)天线的回声。位于澳大利亚的南半球小行星雷达计划(SHARP)2)在位于堪培拉深空通信络合物(CDSCC)上的70或34 m梁波导天线上使用可用的天线时间,将多普勒补偿的连续电台传输到2.114 GHz(14.2 cm)和7.1594和7.1594594594594594.15945。在澳大利亚的Narrabri的64 m Parkes或64 m Parkes或6 m×22 m的澳大利亚望远镜紧凑型阵列(ATCA)天线的回声。这种NEO观察模式称为深空双重雷达。南半球计划最近也加入了塔斯马尼亚州塔斯马尼亚大学12 m大学(塔斯马尼亚州)和凯瑟琳(北领地)。将夏普的双向雷达与位于新南威尔士大学(UNSW)和西澳大利亚大学(UWA)的小光圈结合在一起,可以合并光学/RF NEO检测。虽然几十年来对小行星检测的独立贡献,但使用协调的小于0.3 - 0.5 m的仪器同步与大型小行星雷达同步,可提供观察性的灵活性和
摘要——本研究介绍了一种新型混合滑模控制器,该控制器集成了人工神经网络 (SMC-ANN),用于使用智能电源管理系统 (IPMS) 进行实际电力交换。本文的目的是探索电动汽车的瞬态和稳态电压、瞬态电流、瞬态功率以及电动汽车扭矩和电动汽车速度。在给出一个非线性信号来模拟网络在其正常行为的横截面上“滑动”时,滑模控制是一种影响非线性系统动态的非线性控制策略。该设置包括公用电网、集成光伏电源 (PV) 能量和电池存储系统 (BSS)。实施高增益 DC/DC 升压转换器以将 BSS 连接到 DC 总线。电源调节系统从 PV 面板 (PCS) 接收直流输出电压。这些转换器的双向特性提供了存储系统、负载和 PV 系统之间电力传输的好处。将新开发的算法得到的结果与传统滑模控制器 (SMC) 进行比较,发现新开发的算法比传统算法产生的结果更好。使用 MATLAB 软件进行仿真。索引术语 — 电池存储系统 (BSS)、光伏系统 (PV)、滑模控制 (SMC)、人工神经网络 (ANN) 和 MATLAB。
由于常规能源(化石燃料)的环境影响,可再生能源资源(例如太阳能和燃料电池)引起了人们的关注。电动汽车在群众中也在环境友好和长期成本较低的情况下越来越受欢迎。DC -DC电力电子转换器是太阳能电器和电动汽车中必不可少的项目。在此类应用中,双向DC -DC转换器用于实现两种类型的目的:在燃料电池为完全电动汽车供电的情况下,以及在高压电池收取燃料电池时,燃料电池为燃料电池提供动力,就像高增益级别转换器一样。在此研究项目中,我们将重点放在创建一个能够从输入到其输出的电压下降的目标转换器。我们将介绍MATLAB R2020A/SIMULINK中开放环转换器的设计和模拟,以及各种参数(例如固定占空比,效率,输出电压和功率)等各种参数的计算。开放循环的基础知识:开路提供了一个固定的占空比,以获得理论上计算的输出电压。最终,没有从输出到输入的反馈,反对具有一个或多个反馈回路的闭环。buck转换器是DC -DC电源转换器,可以通过降低端点处的电压来起作用。该电路至少包含两个半导体(MOSFET/二极管),两个储能元件(电感器/电容器)和一个负载(电阻)。电容器的目的是在负载电阻器上保持相对稳定的输出。
29.高增益 X 波段 SCP.................................................................................................................60 30. X 波段 SCP.................................................................................................................61 31. 样条喇叭天线.................................................................................................................62 32. 波纹喇叭天线.................................................................................................................63 33. C 波段 SAT 馈电网络....................................................................................................64 34. Ku 波段 SAT 滤波器....................................................................................................65 35. X 波段 SAT DRA.............................................................................................................66 36. X 波段 SAT - AM 设计................................................................................................67 37. X 波段 SAT 系统.............................................................................................................68 38. Ku 波段 SAT 系统.............................................................................................................69 39. K/Ka 波段 SAT 系统.............................................................................................................70 40. Q 波段 SAT系统................................................................................................................71 41. QV 波段 SAT 系统..............................................................................................................72 42. E 波段 SAT 系统..............................................................................................................73 地面段系统......................................................................................................................74 43. C 波段系统......................................................................................................................75 44. X 波段系统......................................................................................................................76 45. K/Ka 波段馈电网络.............................................................................................................77 46. X/K/Ka 波段系统.............................................................................................................78 47. DBS / Ka (+跟踪) 系统.............................................................................................................79 发射器天线.............................................................................................................................80 48. 平面和共形天线.............................................................................................................81 定制开发.............................................................................................................................82 雷达技术.............................................................................................................................84 uRAD - 通用雷达 - Anteral 公司出品.............................................................................................85 开源 24 GHz uRAD........................................................................................................86 uRAD 60 GHz 工业级.........................................................................................................................87 uRAD 77 GHz 汽车级.....................................................................................................................88 uRAD 智能交通解决方案.........................................................................................................................89 uRAD 液位传感.........................................................................................................................92 uRAD 智能雷达传感器.........................................................................................................................93
深层地下中微子实验 (DUNE) 的远探测器 (FD) 将配备液氩时间投影室 (LArTPC),其中闪烁光将由适合低温应用的硅光电倍增管探测。在 DarkSide 实验的要求推动下,FBK 开发了一种用于低温应用的 SiPM 技术 (NUV-HD-Cryo SiPM),该技术的特点是在低温下具有极低的暗噪声,约为几 mHz/mm2,后脉冲概率低,并且淬灭电阻随温度的变化有限。在 DUNE 合作框架内,NUV-HD-Cryo 技术得到了进一步开发,通过增加深沟槽隔离 (DTI) 的数量来获得具有高增益但串扰有限的设备,目的是为 DUNE 读出模块提供更好的信噪比。大型物理实验通常需要具有最高性能的设备,并在短时间内以低到中等的产量完成紧张的实验计划。在 FBK,我们开发了一个小型供应链,其中包括一家使用 FBK 技术制造 SiPM 的外部代工厂和一家外部封装公司,能够提供中等批量的封装硅探测器。在这项工作中,我们将从 SiPM 的击穿电压、暗电流和正向电阻的均匀性以及 SiPM 板封装的质量评估方面报告 NUV-HD-Cryo 技术的性能和 DUNE 实验的 FBK SiPM 生产状态。
美国海军在巴哈马群岛海舌南部 (TOTO) 运行的潜艇辐射噪声测量系统已接近使用寿命,需要在 2009 财年之前更换。这项为期四年的项目从 2005 财年开始,将在同一区域安装固定、底部安装、与岸上连接的声学系统,以取代现有的水面舰艇部署的潜艇辐射噪声高增益测量系统。主要系统基础设施安装于 2008 年 4 月至 5 月,声学传感器安装于 2008 年 7 月至 8 月。STAFAC 的初始作战能力 (IOC) 为 2008 年 10 月。机械、系泊和安装 (MMI) 综合项目团队由来自罗德岛州纽波特的海军水下作战中心 (NUWC)、加利福尼亚州波特休尼米的海军设施工程服务中心 (NFESC) 和加利福尼亚州文图拉的声音与海洋技术 (SST) 的人员组成,负责设计、制造 STAFAC 系统的机械部件,并安装整个 STAFAC 系统,包括位于巴哈马安德罗斯岛 AUTEC 的 MMI 和阵列部件。STAFAC 系统的配置如右图所示。STAFAC 水下机械系统包括所有底部安装的遥测和电缆、深海系泊设备以及纳入 AUTEC 陆地和海上站点的相关机械子系统。这些包括海底电力和遥测电缆、电光机械终端;遥测和电力转换接线盒的浅水安装结构;仪器压力容器;
摘要 - 高增益和量子限制噪声的放大是一个困难的问题。使用具有高动力学电感的超导传输线的参数放大不仅是解决此问题的一种有前途的技术,而且还增加了一些好处。与其他技术相比,它们具有改善功率饱和度,实现较大的分数带宽并以较高频率运行的潜力。在这种类型的放大器中,选择适当的传输线是其设计中的关键元素。鉴于当前的制造局限性,传统的线路(例如Coplanar WaveGuides(CPW))并不理想,因为很难使它们具有适当的特征阻抗,以使其具有良好的匹配和足够慢的相位速度,以使其更加紧凑。电容载荷线,也称为人造线,是解决此问题的良好解决方案。但是,很少提出设计规则或模型来指导其准确的设计。考虑到它们通常是以Floquet线的形式制造的,这一事实更加重要,必须仔细设计以抑制参数过程中出现的不希望的谐波。在本文中,我们首先提出了一种新的建模策略,基于电磁仿真软件的使用,其次是一种促进和加快CPW人造线和由其制成的Floquet线的设计的第一原理模型。然后,我们与实验结果进行了比较,以证明其准确性。最后,理论模型允许人们预测人造线的高频行为,表明它们是实现100 GHz以上参数放大器的良好候选者。
由于电信、医疗、计算机和消费电子等所有市场领域对便携式应用的更小尺寸和更长电池寿命的需求不断增长,低压低功耗硅片系统的发展趋势日益增长。运算放大器无疑是模拟电子电路中最有用的设备之一。运算放大器的构建复杂程度各不相同,可用于实现从简单的直流偏置生成到高速放大或滤波等功能。仅需少量外部元件,它就可以执行各种模拟信号处理任务。运算放大器是当今使用最广泛的电子设备之一,被用于各种消费、工业和科学设备中。运算放大器,通常称为运算放大器,是模拟电子电路中使用最广泛的构建模块之一。运算放大器是一种线性器件,它不仅具有理想直流放大所需的几乎所有特性,还广泛用于信号调节、滤波和执行数学运算,如加、减、积分、微分等。运算放大器通常是一个 3 端器件。它主要由一个反相输入端(在运算放大器符号中用负号(“-”)表示)和一个同相输入端(用正号(“+”)表示)组成。这两个输入端的阻抗都非常高。运算放大器的输出信号是两个输入信号之间的放大差,或者换句话说,是放大的差分输入。通常,运算放大器的输入级通常是差分放大器。运算放大器是一种具有相当高增益的直流耦合差分输入电压放大器。在大多数一般