光电器件的透明导电电极 (TCE) 设计需要在高导电性和透射率之间进行权衡,从而限制了其效率。本文展示了迄今为止最好的 TCE,其新颖的 TCE 制造方法可以有效缓解这种权衡:集成金属的单片高对比度光栅 (metalMHCG)。metalMHCG 比其他 TCE 具有更高的电导率,同时具有透射和抗反射特性。本文重点介绍红外光谱 TCE,这对于传感、热成像和汽车应用至关重要。然而,由于自由载流子吸收率升高,它们对可见光谱的要求比 TCE 高得多。它展示了创纪录的 75% 非偏振光绝对透射率,相对于普通 GaAs 基板的透射率达到创纪录的 108%。它实现了更大的偏振光绝对透射率,达到 92% 或 133% 的相对透射率。尽管透射率创下了历史新高,但金属 MHCG 的薄层电阻却是有史以来最好的,比任何其他 TCE 都低几倍,范围从 0.5 到 1 𝛀 Sq − 1。
摘要。我们通过变异技术得出,这是在线性差异约束下对一类积分函数的限制描述。功能旨在编码高对比度复合材料的能量,即一种异质材料,在微观层面上,该材料由定期穿孔的基质组成,其腔体被填充的物理特性填充而占据。我们的主要结果提供了γ-连接分析,因为周期性趋于零,并表明功能的变化极限是两种贡献的总和,一种是由矩阵中存储的能量而产生的,另一个是由存储在包含物中的能量。由于潜在的高对比度结构,该研究在L P中的标准拓扑方面缺乏矫正性,我们通过两尺度收敛技术来解决。为了处理差异约束,我们建立了有关线性,k -th顺序,具有恒定系数和恒定等级的均质差分运算符的电势和约束的扩展运算符的新结果。
摘要:单片高对比度光栅 (MHCG) 由单片层中图案化的一维光栅组成,可提供高达 100% 的光功率反射率,并且可以在现代光电子学中使用的几乎任何半导体和介电材料中制造。MHCG 可实现单片集成、偏振选择性和多功能相位调谐。它们可以比分布式布拉格反射器薄 10 到 20 倍。MHCG 的亚波长尺寸大大降低了确保 MHCG 条纹侧壁光滑度的可能性,并使在蚀刻过程中精确控制 MHCG 条纹横截面的形状变得困难。问题在于,改进蚀刻方法以获得设计所假设的完美横截面形状是否更有利,或者是否有可能使用给定蚀刻方法提供的形状找到能够实现高光功率反射的几何参数。在这里,我们进行了一项数值研究,该研究由使用多种常见的表面纳米级成型方法在不同材料中制造的 MHCG 的实验表征支持。我们证明具有任意横截面形状的 MHCG 条纹都可以提供接近 100% 的光功率反射率,这大大放宽了它们的制造要求。此外,我们表明,对于准梯形横截面的 MHCG,可以实现超过 99% 的光功率反射率和超过 20% 的创纪录光谱带宽。我们还表明,如果波纹幅度小于 MHCG 周期的 16%,MHCG 条纹的侧壁波纹对 MHCG 光功率反射的影响很小。使用最新的表面蚀刻方法可以实现这种条纹制造精度。我们的研究结果对于设计和生产采用 MHCG 的各种光子器件具有重要意义。横截面形状的灵活性有利于可靠地制造高反射率亚波长光栅镜。这反过来又将使制造单片集成的高品质因数光学微纳腔器件成为可能。关键词:单片高对比度光栅、亚波长光栅、光功率反射
摘要在包含物和不同材料的基质组成的复合材料中,一些包含物彼此紧密地位于彼此之间。如果夹杂物的材料特性与基质的材料特性高,则场浓度发生在紧密的夹杂物之间的狭窄区域中。在复合材料和成像理论中,定量地理解场浓度是重要的,因为它代表了压力或场的增强。过去30年左右,在分析这种野外浓度方面的情况下取得了重大进展:最佳估计和渐近表征限制了场浓度,在电导率方程(或抗层弹性),线性弹性系统和Stokes系统的情况下得出了现场浓度。本文的目的是以连贯的方式审查其中的一些。
大量能源使用。几乎没有足够的空间来进一步改善电力转换,当需要在白天的可见度时,功耗变得特别高。解决这一问题的能量浪费的解决方案是使用反射性显示,也称为“电子纸”,这仅反映了环境光。这会导致功耗极低,[1]提高了明亮环境中的可见性和潜在的健康益处。[2]最近,出现了一个新的研究方向,重点是对等离子体结构颜色的积极控制[1,3],而电子纸是该领域的一个重要应用。但是,无论是否使用等离子纳米结构,证明其具有与散发性显示的性能相当的电子纸非常困难。[4]广泛的商业设备基于电泳墨水[5](Amazon Kindle等)且颜色模式下的图像质量差,这是通过包含红色,绿色和蓝色(RGB)滤镜的子像素来实现的。[6]此外,慢速开关(≈1s)可防止视频播放 - 将用法限制在电子阅读器和简单标签等应用程序中。电视技术是一种重要的电子纸技术,因为它提供了视频速度,[7],但在商业上仍然无法使用。当电影和闪烁完全消失在≈50hz时,人眼认为> 20 Hz的刷新速率> 20 Hz。通过LCD显示器可以实现如此快速的刷新率,但是在反射构型中,图像可见度[8](绝对反射率<15%)。有机和无机电致色素材料已成为可见光谱区域上高对比度极化独立转换的强大候选者[9],但是它们的响应时间通常太慢了视频显示的速度(对于过渡金属氧化物而言,数百个MS甚至更多)。通常认为,尽管结构颜色对于电致色素设备来说是非常有趣的,但是对于视频应用来说,开关不能足够快,尤其是如果对比度应该很高(≈50%的绝对反射率或传输变化50%)。对于导电聚合物,开关速度的局限性主要归因于在掺杂过程中电解质和聚合物膜中离子相对较慢的“差异”。[10]存在一些例外,例如聚隔离线,已知可以很快地改变质子化状态。[11]
理解视觉系统的感觉转换的关键挑战是获得一个高度预测的模型,该模型将自然图像映射到神经反应。深神经网络(DNNS)为这种模型提供了有前途的候选人。但是,由于实验记录时间受到严重限制,DNN要求比神经科学家可以收集的训练数据多。这促使我们找到了用尽可能少的培训数据训练高度预测的DNN的图像。,我们提出了自然图像的高对比度,双核版本(Termed Gaudy图像),以有效地训练DNNS,以预测高阶的视觉皮质响应。在对真实神经数据的仿真实验和分析中,我们发现具有艳丽图像的训练DNN大大减少了准确预测对自然图像的响应所需的训练图像的数量。我们还发现,在训练之前选择的谨慎图像优于通过主动学习算法在训练期间选择的图像。因此,谨慎的图像过多地强调了自然图像的特征,这对于有效地训练DNN最重要。我们认为,艳丽的图像将有助于对视觉皮质神经元的建模,这有可能打开有关视觉处理的新科学问题。
光学材料的设计、合成和应用,专门研究多功能新型发光材料、二维材料和变色/光学可变颜料,用于防伪油墨配方,打击货币、护照和重要文件的伪造。 开发隐形墨水(在 365 nm 紫外线 LED 下可见的红色发光),用于防止重复投票。 开发用于高对比度荧光细胞成像以及用于药物输送应用的 MRI 高对比度成像的发光磁性材料。 开发与蓝色二极管激光器集成的黄色荧光粉,为汽车前照灯应用产生白光。 开发用于光学显示和储能应用的碳奇异材料(石墨烯、石墨烯量子点、碳纳米管和纳米纤维)。 设计自主开发的 CVD 装置,用于在 Si/SiO 2 基板上连续生长高度可重复的“MoS 2 /MoSe 2 /WSe 2 单层”沉积,用于计量、太赫兹和光电探测器设备。
摘要。下一代极端紫外线(EUV)系统具有0.55的数值,具有提供低于8 nm的半程分辨率的潜力。在较小的特征尺寸下,随机效应的重要性增加了扫描仪和掩模以提供高对比度图像的进一步需求。我们使用严格的面膜衍射和成像模拟来了解EUV掩模吸收器的影响,并确定用于高NA EUV成像的最合适的光学参数。对各种用例和材料选项的仿真表示两种主要解决方案类型:高灭绝材料,尤其是针对线条空间,以及可以提供相移遮罩溶液的低折射率材料。euv相掩码的行为与DUV的相移面膜大不相同。精心设计的低折射率材料和口罩可以为高对比度的边缘打开新的道路。©作者。由SPIE发表在创意共享归因4.0未体育许可下。全部或部分分发或重新分配或重新分配本工作,需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jmm.m.19.4.041001]
摘要。我们通过变异技术得出,在线性差异约束下,对一类积分函数的限制描述。这些功能旨在编码高对比度复合材料的能量,即一种异质材料,在显微镜水平上,该材料由周期性穿孔的基质组成,其腔体被具有非常不同的物理特性的纤维而占据。我们的主要结果提供了γ-连接分析,因为周期性趋于零,并表明功能的变化极限是两种贡献的总和,一种是由矩阵中存储的能量而产生的,另一个是由存储在包含物中的能量。由于潜在的高对比度结构,该研究在L P中的标准拓扑方面缺乏矫正性,我们通过两尺度收敛技术来解决。为了处理差异约束,我们建立了有关线性,k -th顺序,k -th顺序,均质差异的势能的势和约束的扩展运算符的新结果,具有恒定的系数和恒定等级。
使用 ZEISS Versa XRM 上的相位对比模式对吸入混合物中的乳糖载体颗粒进行成像。显示了原始(左)和 PhaseEvolve 处理(右)断层扫描数据的扫描体积重建的 2D 切片以及相应的直方图。处理后的数据提供无伪影的高对比度数据,其直方图易于分割。