奥氏体不锈钢 (ASS) 常用于敏感的氢气 (H) 存储、氢气基础设施以及运输应用,因为与铁素体钢相比,它们通常不太容易受到氢脆 (HE) 的影响。这是因为它们的扩散率较低,而氢的溶解度较高 [1-3]。氢脆描述了这样一种现象:材料的机械性能经常会突然发生灾难性的恶化(特别是在受到拉伸载荷时,由于拉伸延展性的丧失),这是由于酸性溶液中的环境氢和含氢气体 [4-8] 扩散到块体材料中造成的。与不易发生 HE 的热力学稳定 ASS(如 AISI 310S 型)相比,在仅含 8 – 10 wt% Ni 的亚稳态 ASS(如 AISI 304 型)中经常观察到严重的 HE,其中在变形过程中会形成应变诱导的 α ′马氏体 [9 – 11]。应变诱导的 α ′马氏体为 H 提供了快速扩散路径,导致 H 在微观结构的关键位置富集(如异质界面前方的微观机械高应力区域),从而导致 H 辅助开裂 [12, 13]。此外,由于凝固过程中的偏析或高冷却速度导致 δ 到 γ 的转变不完全,亚稳态 ASS 中可能会出现少量的 δ 铁素体。这可能会通过提供裂纹起始点来增加样品的 HE 敏感性 [14, 15]。
锂离子电池(LIB)电池的制造遵循一个复杂的过程链,在该过程链中,单个过程影响后续过程。同时,对电池性能,可持续性和成本尤其增加了要求,迫使创新电池材料,生产技术和电池设计的开发。日历过程直接影响电极的体积密度,因此会影响电池电池的体积密度。日历仍然具有挑战性,因为它会在电极中引起高应力,从而导致缺陷,从而增加排斥率。电极材料与过程之间的相互作用以及缺陷的形成仍未完全了解,尤其是在使用新的材料系统时。在这种情况下,钠离子电池(SIB)是一种锂后电池系统,是克服常规LIB的局限性的有前途的选择。因此,本文介绍了第一种材料和机器独立的方法来描述和理解缺陷类型的纵向皱纹,该方法主要出现在电极的未涂层电流收集器边缘和运行方向上。目的是根据其几何形状系统地表征纵向皱纹。自动数据采集是通过激光三角测量系统和3D扫描系统进行的。几何值是根据原始数据计算的,并与所选的过程参数相关。无论材料如何,该方法都是适用的,如SIB的LIB和硬碳阳极的NMC811阴极的示例性结果所示。通过使用两个不同的试点日历,可以显示数据采集可以独立于机器进行。提出的方法有助于寻找解决方案,以避免在任何电池电极中纵向皱纹,从而降低排斥率。
a 威斯康星大学麦迪逊分校机械工程系,美国威斯康星州麦迪逊 53706 b 威斯康星大学麦迪逊分校材料科学与工程系,美国威斯康星州麦迪逊 53706 c 威斯康星大学麦迪逊分校格兰杰工程研究所,美国威斯康星州麦迪逊 53706 ⸸ 通讯作者 摘要 拓扑优化 (TO) 与增材制造 (AM) 的结合有可能彻底改变现代设计和制造。然而,制造优化设计的实例很少,而经过实验测试的设计实例就更少了。缺乏验证再加上 AM 工艺对材料性能的影响,使我们对工艺-微观结构-性能关系的理解存在差距,而这对于开发整体设计优化框架至关重要。在这项工作中,使用定向能量沉积 (DED) 和选择性激光熔化 (SLM) 方法对功能设计进行了拓扑优化和制造。这是首次在 TO 背景下直接比较这些 AM 方法。在单轴位移控制拉伸载荷下,研究了 SS316L 和优化部件在制造和热处理条件下的机械性能,并与有限元建模 (FEM) 预测进行了比较。优化样品在试件中提供了压缩和拉伸载荷区域。实验结果表明 FEM 预测较为保守。微观结构分析表明,这种差异是由于增材制造过程中形成的细化微观结构,可增强高应力区域的材料强度。此外,由于晶粒尺寸更细化和位错结构更密集,SLM 样品表现出比 DED 样品更高的屈服强度。TO 结果对 AM 方法、后处理条件和机械性能差异很敏感。因此,通过结合微观结构特征来考虑制造部件中的局部微观结构变化,可以最好地优化用于 AM 框架的 TO。
结构钢在重工业中起着基本作用,是众多负载产品和设备的关键材料。它的广泛使用归因于其稳健性,耐磨性,易于使用的施工和成本效益。随着行业越来越关注可持续发展,越来越重视有效的物质使用和组件性能的增强。通过整合高性能材料和适当的设计方法来实现结构的优化对于推进产品开发至关重要。这种设计策略应着重于在维持经济生存能力的同时最大化结构能力。尽管这些优化结构的生产成本可能更高,但这通常是由于其运营成本降低和降低的环境影响所弥补的。实施高强度结构钢,以实现轻质重量和高性能结构,因此必须设计一种可以承受高应力的设计。这些材料具有提高的静态强度,并且由于其优势的微观结构而表现出增强的疲劳性耐药性。然而,这些材料在结构应用中的全部潜力受到设计决策和制造技术的显着影响。常见的产生甲基量(例如焊接和切割)通常会阻碍高性能材料中的作用强度的改善。它将焊缝的质量和切割边缘的质量确定为关键限制因素。因此,为了充分利用高强度材料的好处,至关重要的是增强和理解焊接质量的影响,降低边缘质量,缺陷耐受性和潜在的焊接后处理,从而确保这些因素与材料的增强强度特征相吻合。目前的工作研究了可以增强承载结构的可靠性的方面,从而促进了高应力设计的使用和高强度钢的整合。重新搜索彻底检查其影响并提出了新的推荐。还进一步研究了缺陷公差,以了解缺陷如何影响这些高强度材料。发现重要的见解,以开发改进的焊缝和切割边缘的质量建议,这在有效地利用高强度钢的有效性上是基本的。
首先,本综述探讨了先前关于混合氢气对混合气体流体和热力学性质、输配电网络内管道材料和设备性能以及地下储存和最终用途氢气分离等支持设施的影响的研究。众所周知,氢气的存在会增加常用管道钢中疲劳裂纹的扩展速度,研究表明,抗拉强度较高的金属在与氢气接触时,抗断裂性能的下降幅度往往大于抗拉强度较低的金属。最近的研究表明,即使在氢分压较低的情况下,疲劳裂纹扩展和抗断裂性能也会降低,随着氢分压的增加,随后的降低幅度会更小。在高应力情况下,疲劳裂纹扩展与氢浓度基本无关。ASME B31.12 等设计指南提供了如何根据管道直径和厚度评估许多常见管道材料的合适工作压力的指导。需要对美国天然气管道系统中使用的老式钢材进行额外的疲劳和断裂测试,以确定其在氢气环境中的极限行为,尤其是老式的焊缝和硬点,并且必须检查任何考虑混合的现有管道是否存在缺陷。虽然塑料管道通常被认为适合在配电网络压力下容纳氢气,但研究表明,氢气会影响聚乙烯材料的物理特性,例如密度和结晶度。需要进行更多研究来量化这些变化对聚合物管道和管道接头的机械性能和寿命的影响,以及氢气对特定树脂配方的影响。氢气对材料的影响还延伸到压缩机、阀门、储存设施和其他非管道组件。评估地下储存设施中的氢气还必须考虑与可能消耗氢气的微生物相关的潜在反应,以及枯竭的油气储层(最常见的天然气储存类型)中存在的残留碳氢化合物对最终用途应用的危害程度(基于所需的氢气纯度)。氢分离是一项成熟的技术,但对于天然气中低氢浓度混合物来说,成本可能过高。
摘要:心肌重塑是由于急性或慢性病理学的应激增加而发展的。压力心形态(SHM)是一个新的描述,代表了由于高血压后负荷增加而导致的情绪压力和慢性压力引起的基础层肥大(BSH)。急性应激心肌病(ASC)和高血压可以在临床实践中一起进行。因此,关于该特定位置的几何和功能方面,急性和慢性应激刺激下的隔膜基础。我们和其他研究小组的发现支持高血压介导的心肌参与可以在ASC病例中预先存在。除了经常见到的主要基础之外,在高血压和ASC中都检测到了超动力组织反应。此外,高血压是复发性ASC的负责任因素。最具支持性的前瞻性发现是BSH,其中超收入基础比在生理锻炼和跨压力超负荷的小动物中使用微型成像在生理锻炼和压力超负荷下需要更长的时间来形态学。然而,用根尖气球进行的心脏代偿性可以掩盖可能的潜在高血压疾病。实际上,由于在急性发作中被接受为急性冠状动脉综合症,因此无法在急诊单元中评估以前的高血压病史或节段性分析的足够时间。运动高血压作为血压变异性的典型形式是生理运动和病理学的总和增加了血压,并导致死亡率增加。SHM的其他支持结果是高血压BSH中的应力评分增加,并且在过度交感神经过度驱动(如嗜铬细胞瘤)中存在相似的组织方面,这可能导致高血压疾病和ASC。高血压在高应力评分的患者中并不罕见,并且会导致ASC的重复攻击,从而支持情绪成分的重要作用以及同时多种压力源引起的潜在危险。在当前的审查中,讨论了多种压力源对分段或全球心肌重塑的影响以及同时讨论多个压力源的危险潜力。结果,可以在多种压力源的患者中召回偶然确定的节段重塑,并在预防全球重塑和心力衰竭的预防中对高血压和慢性压力的早期和综合治疗有助于。
规范场景 最常见的场景 - 规范中未注明工艺内焊接返工:已焊接、混合、热处理并通过所有图纸指定检查的铸件通常在尺寸、物理、化学、冶金和结构上符合图纸要求。因此,商业铸件中很少注明限制或记录工艺内焊接返工表面缺陷的规范。同样,未按服务严重程度分类的军用或航空航天铸件通常也没有限制或记录工艺内焊接返工的规范。指定 AMS 2175(铸件分类和检验)的场景:对于军用和航空航天铸件,在 AMS 2175 中,铸造部件服务的严重程度分为 1 至 4 级,表面和/或内部完整性指定为 A 至 D 级。不同等级需要不同级别的无损检测取样,以验证是否符合指定的完整性等级。值得注意的是,等级与分类铸件高应力表面的循环寿命直接相关。AMS 2175 涵盖了几乎所有铸造工艺和全系列铸造合金,因此它也被用作安全关键铸件的商业标准,SAE 2175 与之相同。重要的是,AMS 2175 没有提及过程中焊接返工,仅规定 A 至 D 级缺陷的程度在射线照相、磁粉、模具渗透检测和/或目视检查中为“分级”。这是在所有铸件精加工过程(包括最终热处理)完成后进行的检查。这些精加工过程包括过程中焊接返工(如果适用)。无论是否焊接,通过指定等级都表明铸件设计的允许转换应力将实现预期的循环寿命。相反,不良的过程中焊接返工将导致表面和/或地下迹象无法通过指定完整性等级的测试。单击此链接“工艺中焊接返工规范和属性数据”,获取铝合金和镁合金最终热处理后焊接与铸态母合金的静态、循环和断裂韧性数据。工艺中焊接返工受到限制或必须记录的情形:使用 AMS 2175 来确保与循环寿命设计意图直接相关的表面和内部完整性,限制或要求记录工艺中焊接返工是一种不必要的“安全带加吊带”预防措施。例如,AMS-A-21180(高强度铝合金铸件)允许调用“无焊接区”或“仅在获得购买者书面许可的情况下进行焊接返工”。可能需要显示焊缝位置、尺寸和深度的地图
这项维特罗研究的目的是比较单片氧化锆和多层氧化锆的骨折韧性,这是义齿修复体中的两种常用材料。断裂韧性是一个关键的机械性能,它决定了材料在压力下对裂纹传播的抗性,这对于牙齿修复的寿命和性能至关重要。使用计算机辅助设计和计算机辅助制造(CAD/CAM)技术制造了共有20张锆石(10个单片和10个多层)。使用Vickers Micro-Hardness测试仪使用压痕法测量椎间盘进行负载和断裂韧性。整体锆石的断裂韧性值(第1组)明显高于多层锆石(第2组)的断裂韧性值,平均值为5.394±0.378 MPa·M 1/2和4.358±0.394 MPa·M Pa·M 1/2(p <0.0001)。这些发现表明,整体氧化锆提供了出色的机械性能,使其成为更合适的高应力应用材料,而多层氧化锆则是前恢复的多层氧化锆,在前修复学位优先级。这项研究强调了在选择用于牙科修复体的氧化锆材料中的机械强度和美学吸引力之间的权衡,并为优化临床假体的材料选择提供了宝贵的见解。引言固定义齿牙齿领域的高级材料的开发显着影响了牙科修复体的寿命和性能。两种材料均根据其在固定假牙和氧化锆,特别是由于其出色的机械性能,包括高强度和断裂韧性,成为一种流行材料,使其成为牙冠和桥梁的理想选择[1]。单片氧化锆是用单个材料制成的,具有优异的强度和最小的分层风险[2]。然而,最近的进步引入了多层氧化锆,它结合了不同的层与不同的特性,以改善美观的同时试图维持结构完整性[3]。断裂韧性是评估牙科材料性能的关键参数,因为它决定了材料在压力下抵抗裂纹传播的能力[4]。氧化锆修复体的断裂性可能会受到几个因素的影响,包括材料的组成,层数,制造过程以及在功能过程中假体受到机械力的条件[5]。整体锆石虽然以其强度而闻名,但可能缺乏天然牙齿的美学特性,导致了多层氧化锆系统的引入[6]。这些多层系统结合了更透明的表面层,试图平衡强度和美学吸引力[7]。本文旨在评估和比较肢体修复应用中整体和多层锆的断裂韧性。通过研究这两种不同的氧化锆结构的机械性能,该研究旨在考虑功能性和美学需求,以洞悉牙科修复体的最佳材料选择。这些发现将有助于更好地理解这些材料在临床环境中的优势和局限性,最终指导未来的假体牙科进步。材料和方法材料在本研究中使用了两种类型的氧化锆材料:单片氧化锆和多层氧化锆。
将残余应力效应纳入塑性、断裂和疲劳裂纹扩展模型以评估铝制船舶结构的可靠性 1.0 目标。 1.1 本项目的目标是开发一种经过实验校准和验证的计算工具,该工具可准确预测结构铝合金在残余应力影响下因疲劳和延性断裂而产生的塑性响应和失效。该数值工具不仅可用于铝制船舶结构的可靠性评估和生存力分析,还可用于制定船舶设计和优化的断裂控制计划。 2.0 背景。 2.1 近年来,计算力学的快速发展使工程师能够分析复杂的船舶结构、评估结构可靠性和优化结构设计。因此,对更精确的材料模型的需求变得越来越明显;特别是当最小化设计裕度成为重量优化或延长寿命的方法时。 2.2 船舶结构可能会受到大海或事故(如碰撞和搁浅)造成的极端载荷条件的影响。军用舰船在作战中还要承受严峻的载荷,在极端条件下,舰船结构可能会发生较大的塑性变形,这种变形可能是单调的,也可能是循环的,从而导致结构失效。2.3 到目前为止,绝大多数结构分析采用经典的 J 2 塑性理论来描述金属合金的塑性响应,该理论假设静水应力和应力偏量第三不变量不影响塑性行为。然而,越来越多的实验证据表明,J 2 塑性理论中的假设对许多材料来说是无效的。Gao 等(2009)注意到 5083 铝合金的塑性响应与应力状态有关,并提出了 I 1 -J 2 -J 3 塑性模型。2.4 等效断裂应变通常用作延性断裂准则,人们普遍认为它的值取决于应力三轴性(Johnson and Cook,1985)。然而,最近的研究表明,单独的应力三轴性不足以表征应力状态对延性断裂的影响。Gao 等人(2009)开发了一种应力状态相关的延性断裂模型,其中失效等效应变表示为应力三轴性和应力偏差的第三不变量的函数,并且针对 ABS Grade DH36 钢校准了该断裂模型。2.5 Gao 团队(Jiang, Gao and Srivatsan;2009)的先前研究开发了一种不可逆内聚区模型来模拟疲劳裂纹扩展。该模型已成功针对 7075 铝合金进行校准,并预测了紧凑拉伸剪切试样中的疲劳裂纹扩展。数值结果捕捉了加载模式和过载对疲劳裂纹扩展速率的影响。2.6 焊接接头广泛应用于船舶结构。然而,它们给建模和分析带来了很大的复杂性,例如母材、焊件和热影响区的材料行为和特性不同;焊趾处的几何不连续性(这会改变应力分布并导致焊趾处出现高应力)和残余应力。这些因素加剧了施加在底层材料上的局部应力,降低了不考虑此类影响的材料模型的准确性。焊缝通常不会在结构尺度上以这种详细程度建模,但由于这些原因,故障通常会在这个区域开始
地质学、工程地质学、岩石力学和岩石工程领域已发表论文的一些参考文献 1. Aagaard B.、Grøv E. 和 Blindheim OT (1997):喷射混凝土作为不利岩石条件下岩石支护系统的一部分。国际岩石支护研讨会,地下结构应用解决方案。挪威利勒哈默尔。 2. Aagaard B. 和 Blindheim OT (1999):挪威三条海底隧道穿越极差薄弱区。ITA 世界隧道大会 '99 论文集,奥斯陆,10 页。 3. Aasen O.、Ödegård H. 和 Palmström A. (2013):阿尔巴尼亚加压引水隧道规划。挪威水电隧道 II。出版物编号。 22. 挪威隧道协会,2013 年,第 21-27 页。4. Abbiss CP(1979 年):通过地震勘测和大型水箱试验对 Mundford 白垩的硬度进行了比较。Géotechnique,29,第 461-468 页。5. Abelo B. 和 Schlittler F.(1973 年):为玻利维亚中央系统提供额外电力。Water Power,1973 年 4 月,第 121-128 页。6. Aglawe JP(1998 年):高应力地面地下洞室周围的不稳定和剧烈破坏。加拿大金斯敦皇后大学采矿工程系博士论文。正在进行中。7. Aitcin PC、Ballivy G. 和 Parizeau R.(1984 年):浓缩硅灰在灌浆中的应用。创新水泥灌浆,ACI 出版物 SP-83,1984 年,第 1-18 页。 8. Aksoy OC、Geniş M.、Aldaş UC、Özacar V.、Özer CS 和 Yılmaz Ö.(2012 年):使用经验方法确定岩体变形模量的比较研究。工程地质学 131-132,19-28。 9. Aldrich MJ(1969 年):孔隙压力对 Berea 砂岩受实验变形的影响。美国地质学会通报,第 80 卷,第 8 期,第 1577-1586 页。 10. Aleman,VP(1983 年):悬臂式掘进机的切割率预测,隧道和隧道施工,第 23-25 页。 11. Alemdag S.、Gurocak Z. 和 Gokceoglu C. (2015):一种基于简单回归的岩体变形模量估算方法。J. Afr. Earth Sci. 110,75–80。12. Alemdag S.、Gurocak Z.、Cevik A.、Cabalar AF 和 Gokceoğlu,C. (2016):使用神经网络、模糊推理和遗传编程对分层沉积岩体的变形模量进行建模。工程地质学 203,70–82。13. Allen H. 和 Johnson AW (1936):确定土壤膨胀特性的测试结果。公路研究委员会会议记录,美国 16,220。14. Almén KE.、Andersson JE.、Carlsson L.、Hansson K. 和 Larsson NA。 (1986):结晶岩的水力测试。单孔测试方法的比较研究。SKB 技术报告 86-27。Svensk Kärnbränslehantering AB。15. Alonso E. 和 Berdugo IR (2005):含硫酸盐粘土的膨胀行为。Proc. Int. Conf. Problematic Soils。法马古斯塔,2005 年。
