摘要 研究基础设施对于推进健康和疾病知识、通过世界一流的尖端设施和技术专长促进创新至关重要。Phenomics Australia 是澳大利亚的国家研究基础设施提供商,负责通过开发和提供工程疾病模型生产、表型分析和生物库方面的服务和专业知识来加速哺乳动物功能基因组学和精准医学的发展。这些能力和资源由澳大利亚国家合作研究基础设施战略提供支持,主要支持健康和医学研究,以带来重大的医疗保健和经济效益。澳大利亚政府 2021 年国家研究基础设施路线图中确定的优先事项包括开发和扩展数字研究基础设施的能力、改进研究转化和加强生物收集管理,这些都与 Phenomics Australia 的战略高度一致,即开发和实现大规模获取高质量国家遗传资源。在这里,我们评论了 Phenomics Australia 对这些国家战略要求的响应以及临床前生物模型研究基础设施在澳大利亚的关键作用。
稳定同位素分析是一种相对测量。精度远高于准确度,因此必须相对于参考进行细微的同位素差异。现代质谱仪可以常规测量气体的 18 O 值,精度为 0.01‰。这比 VSMOW 的 18 O/ 16 O 比率的精度高 20 倍(Baertschi 1976)。正是出于这个原因,与大多数分析测量一样,同位素分析是相对于标准报告的。稳定同位素界面临的问题是,使用不同的技术测量不同的材料,并且很难直接比较它们。人们做出了巨大的努力,将不同类型的分析调整到同一尺度,以便可以直接比较在不同实验室收集的不同材料的数据。对于传统的 18 O 分析,围绕共同标准的形成需要几十年的时间。陆地材料的三重氧同位素研究(18 O 和 17 O)是一门相对较新的学科,标准化协议直到最近才达到高度一致。在本章中,我们首先考虑已建立的 18 O/ 16 O 比率标准化的历史路径。然后讨论将标准化扩展到 17 O/ 16 O,目的是为常用参考材料提供一套统一的标准值。
实时可视化分子转变需要一种具有 A ˚ ngstr om 空间和飞秒时间原子分辨率的结构检索方法。含氢分子的成像还需要一种对氢核原子位置敏感的成像方法,大多数方法对氢散射的灵敏度相对较低。激光诱导电子衍射 (LIED) 是一种桌面技术,可以以亚 A ˚ ngstr om 和飞秒时空分辨率以及对氢散射的相对高灵敏度对气相多原子分子的超快结构变化进行成像。在这里,我们对孤立氨分子 (NH 3 ) 在强场电离后的伞状运动进行了成像。中性氨分子电离后,氨阳离子 (NH 3 + ) 在约 8 飞秒内经历超快几何转变,从金字塔结构 ( U HNH = 107 ) 变为平面结构 ( U HNH = 120 )。利用 LIED,我们在电离后 7:8 9:8 飞秒内恢复了近平面 ( U HNH = 117 6 5 ) 场修饰 NH 3 + 分子结构。我们测量的场修饰 NH 3 + 结构与使用量子化学从头计算计算出的平衡场修饰结构高度一致。
研发了远程医疗模拟(IoMT)系统,系统地结合混合现实(MR)、5G云计算和生成对抗网络(GAN)实现肺癌远程实施。收集曲靖和德宏90例肺栓塞(PE)阳性肺癌患者和1372例肺癌对照组的患者特异性数据,通过5G进行传输和预处理。采用一种新型基于鲁棒辅助分类器生成对抗网络(rAC-GAN)的智能网络,实现肺癌PE预测模型。为了提高远程手术实施的准确性和沉浸感,利用基于数字孪生的5G MR引导线索,将感知层的实时手术室视角和手术导航图像投射到应用层的外科医生头盔上。新型智能IoMT系统的曲线下面积(AUC)准确率分别为0.92和0.93。此外,从我们的 rAC-GAN 模型中学习到的致病特征与统计流行病学结果高度一致。所提出的智能 IoMT 系统在处理云中心的大量临床数据时产生了显着的性能改进,并为基于数字孪生的手术实施展示了一种用于远程医疗数据传输和深度学习分析的新框架。
本文介绍了一种用于内隔墙的船用夹层板的屈曲分析研究,该夹层板具有多层石墨烯纳米片 (GPL)/聚合物复合面板。芯层考虑了三种不同的形状:方形、蜂窝状和具有负毒比的凹入蜂窝状。假设面板由石墨烯纳米片 (GPL) 增强的聚合物基质组成。使用 Halpin-Tsai 的微机械方法确定顶层和底层的有效杨氏模量以及有效泊松比和质量密度的混合规则。基于新的五阶剪切变形理论对墙夹层板进行建模。采用汉密尔顿原理获得板运动的控制微分方程。所提出的公式和结果的准确性得到了验证,并通过与文献中可用的结果高度一致证明了其准确性。基于我们的结果,我们指出了蜂窝芯的蜂窝结构对船用内墙夹层板临界屈曲载荷的影响。此外,还利用 Galerkin 方法说明了厚度、纵横比、石墨烯纳米片重量分数和几何参数对临界屈曲载荷的影响。这项研究的成果可能有助于创造更高效的工程应用,特别是在海洋和船舶工业中。
本研究重点关注基于可再生材料的组织等效模型的剂量测量,该模型使用大豆蛋白基粘合剂、红树林 Rhizophora spp. 木材、氢氧化钠和生物基交联剂(衣康酸聚酰胺胺-环氧氯丙烷树脂)设计,配有电离室和 Gafchromic TH EBT3 放射变色膜剂量计。测量是在 6 和 10 MV 的光子以及 6 和 15 MeV 的电子束下进行的。刨花板样品在 100 厘米 SSD 处暴露于 100 cGy 的剂量和场大小(10 x 10 cm 2)。剂量计分别在模型板内的测量深度 1.5、2.5 和 3.0 cm 处进行照射。刨花板表现出优异的物理和机械性能以及超过可接受标准的尺寸稳定性。剂量测量结果显示,剂量与水和固体水均高度一致。此外,测量的剂量特性之间的比较在测试场大小的最大剂量的光子和电子能量的 ± 2%、± 2%、± 10% 和 ± 5.5% 范围内。这项研究成功地证明了 SPC-SPI/NaOH/IA-PAE 粘合的红树属植物刨花板是有前途的组织等效体模材料,具有医疗应用的优点。
在耦合微观聚结模型的输运模型中,研究了√sNN=2.4GeV时20-30%Au+Au碰撞中心性中质子和氘的有向和椭圆流及其标度特性.结果表明,用同位旋和动量相关的核平均场模拟的不可压缩率K0=230MeV的流动及其标度特性与HADES数据有很好的拟合度,而常用的动量无关的核平均场模拟的流动及其标度特性只能部分拟合HADES数据.此外,通过检查√sNN=2时0-10%Au+Au碰撞中心性中质子和氘的快度分布,发现用同位旋和动量相关的核平均场模拟的流动及其标度特性与HADES数据有很好的拟合度. 4 GeV,我们发现,用动量无关的核平均场模拟的氘核快度分布被低估了,而质子的快度分布被高估了。相反,用同位旋和动量相关的核平均场模拟的质子和氘核快度分布与 HADES 数据高度一致。我们的发现意味着,核平均场的动量依赖性是理解核物质性质和成功解释 HADES 数据的一个不可避免的特征。
摘要:我们结合线性粘弹性测量和建模来探索相同分子量的环状和线性聚合物共混物在环组分体积分数较低(0.3 或更低)范围内的动力学。由于线性链的运动,应力松弛模量受到环和线性组分的约束释放 (CR) 的影响。我们开发了一种基于 CR 的环-线性共混物模型,该模型可以预测环组分分数较低范围内的应力松弛函数,与实验结果高度一致。被线性链缠结所困的环只能通过线性链诱导的 CR 来松弛,而且环的松弛速度比线性链慢得多。预计在环重叠体积分数 ϕ R * 下,共混物的相对粘度 η ( ϕ R * )/ η L 相对于线性熔体粘度 η L 的增加与环分子量 M w,R 的平方根成比例增加。我们的实验结果清楚地表明,通过添加少量环状聚合物,可以同时提高线性聚合物熔体的粘度和结构松弛时间。这些结果不仅为 CR 工艺的物理原理提供了根本性的见解,还提出了通过添加环状聚合物来微调线性聚合物流动性能的方法。
土壤水分和植被生长是干旱事件最直接、最重要的指标,因此,了解植被和土壤的光谱行为对于干旱评估至关重要。最近,Ghulam 等人 [Ghulam, A., Qin, Q., Zhan, Z., 2006. Designing of the vertical dirt index. Environmental Geology, doi:10.1007/s00254-006-0544-2 (accessed March 8, 2007).] 建立了垂直干旱指数 (PDI),该指数基于对 NIR-Red 光谱空间中土壤水分空间分布特征的广泛分析。本文提出了一种改进的干旱监测方法,即改进的垂直干旱指数 (MPDI),引入了植被分数,同时考虑了土壤水分和植被生长。为了验证本文提出的干旱指数的有效性,利用不同时刻、不同干旱条件下不同生态系统的增强型专题制图仪 (ETM+) 和中分辨率成像光谱仪 (MODIS) 影像,计算了地面测点的 PDI 和 MPDI。然后将 PDI 和 MPDI 与通过卫星同步进行的田间测量获得的现场干旱指数进行比较,该指数包括不同土壤深度的土壤总含水量、田间持水量、萎蔫系数等。从结果可以看出,PDI 和 MPDI 与现场干旱值高度一致,相关性最高 ( R 2 =0.
基于长丝挤压的金属增材制造为广泛使用的基于梁的增材制造提供了一种替代方案。从基于挤压的技术获得的微观结构与基于梁的增材制造获得的微观结构有很大不同,因为挤压技术采用了烧结工艺,而不是熔池的快速凝固。在本研究中,研究了通过长丝挤压制备的 316L 不锈钢的微观结构与脱脂和烧结条件的关系。采用与能量色散 X 射线映射相关的高速纳米压痕来表征微观结构。发现 1350 ◦ C 的高烧结温度、纯 H 2 气氛和 60 K/m 的冷却速度可产生最佳微观结构。由于加速致密化,可获得高密度,这是通过引入由于 𝛿 铁素体形成而产生的扩散路径实现的。同时,可以避免氧化物或𝜎 沉淀物等硬质相对机械性能产生不利影响。结果表明,可以通过分析纳米压痕映射的硬度和模量数据来量化孔隙率。所得值与光学和阿基米德浸没法测量值高度一致。与文献相比,3D 打印和烧结样品的拉伸试验显示出出色的延展性和强度。我们证明,316L 细丝的 3D 打印和在优化条件下烧结可产生与块体值相当的材料性能。