为了将垂直间隔降至最低标准,需要精确监测飞机的巡航高度。这里关注的重点是测量飞机高度和海平面之间的距离。该距离可以通过机载气压高度计估算,也可以通过机载或地面站的电子无线电波系统测量。第一类设备的指示称为压力高度,或简称为高度,而第二类设备的指示称为几何高度或简称为高度。空中交通管制 (ATC) 中心的高度信息基于飞机应答器系统在收到由二次监视雷达发送的适当询问(称为模式 C 询问)后发送的压力高度测量值。实际上,高度信息是通过表示压力/高度关系的公式转换为高度指示的大气压力测量值。当飞机获准飞行高度时,实际上意味着飞行员必须继续在等压面上飞行。然而,高度测量系统可能会出现系统误差(偏差),这些误差对于每架飞机来说都是不同的,并且会严重影响安全性。因此,高度测量
跟踪。由于 2-D 雷达提供的绘图数据仅包含距离和方位角信息,由于可观测性问题,无法使用单个传感器估计目标高度,因此需要结合从多个 2-D 雷达获得的信息(距离和方位角)。如果只有两个主雷达检测到飞机,则无法使用多点定位技术在空中交通管制系统中确定其高度。一次监视雷达 (PSR) 仅提供飞机的斜距和方位角测量,因此,空中交通管制 (ATC) 系统通常使用从飞机机载模式 C 应答器获得的高度信息来估计飞机的三维位置和速度。二次监视雷达 (SSR) 通常用于询问模式 C 和其他应答器并获取高度和其他
银行业务一直是一项高度信息密集型活动,在很大程度上依赖信息技术(IT)来获取,处理和将信息传递给所有相关客户。金融数字化是一项现代创新,需要整合多种技术和策略,使金融功能能够在数字时代实现价值(Mosteanu,2020)。该研究对金融数字化进行了批判性分析,作为乌干达商业银行客户满意度的工具,以280个股票银行乌干达客户样本的发现为中心。该研究的具体目标是; (i)检查堤岸对客户满意度的影响。(ii)确定金融技术对客户满意度的影响,(iii)建立数据分析与客户满意度之间的关系。
在激光金属沉积(LMD)中,沉积轨道的高度可能在层和层之间变化,从而在过程演化过程中导致显着偏差。以前的作品表明,在某些条件下,会发生自动化的机制,保持规律的高度生长和零件和沉积喷嘴之间的恒定站立距离。在这里,我们分析了粉末集水区效率和沉积高度稳定性之间的联系。为此,开发了一个监测系统,以研究不同过程条件下的沉积,使用样品重量与同轴光学三角调节获得的层高度信息结合使用。一种分析模型用于从高度监测和过程参数实时估计沉积效率,这是由直接质量测量结果验证的。结果表明,轨道高度稳定与粉末集水区效率的降低有关,该效率受熔体池相对于粉末锥和激光束的相对位置的控制。对于给定的一组参数,可以估计距离距离可以实现最高的粉末集水区效率和通过构建方向的常规高度。
最近基于激光雷达的 3D 物体检测 (3DOD) 方法显示出良好的效果,但它们通常不能很好地推广到源(或训练)数据分布之外的目标域。为了减少这种领域差距,从而使 3DOD 模型更具泛化能力,我们引入了一种新颖的无监督领域自适应 (UDA) 方法,称为 CMDA,它 (i) 利用来自图像模态(即相机图像)的视觉语义线索作为有效的语义桥梁,以缩小跨模态鸟瞰图 (BEV) 表示中的领域差距。此外,(ii) 我们还引入了一种基于自训练的学习策略,其中模型经过对抗性训练以生成领域不变特征,这会破坏对特征实例是来自源域还是看不见的目标域的区分。总的来说,我们的 CMDA 框架指导 3DOD 模型为新颖的数据分布生成高度信息丰富且领域自适应的特征。在我们对 nuScenes、Waymo 和 KITTI 等大规模基准进行的大量实验中,上述内容为 UDA 任务提供了显著的性能提升,实现了最先进的性能。
这里我们报道了一种由聚二甲基硅氧烷(PDMS)、多壁碳纳米管(MWCNT)和钕铁硼微粒组成的柔性混合电磁-摩擦电纳米发电机。磁性导电的聚二甲基硅氧烷(MC-PDMS)足够柔软和灵活,可以通过胶带粘贴在不光滑的布料和人体皮肤上,甚至可以缝在织物上。它不仅可以作为EMG的柔性磁性聚合物,在铜线圈中提供电磁感应,还可以用作TENG 0 s电极,传导摩擦电。因此作为TENG,它产生的开路电压和短路电流峰峰值分别为103 V和7.6 μ A,最大功率密度在18.8 M Ω时为7.3 μ W/cm ^ 2。同时,作为EMG,其对应的峰峰值电压、电流和最大功率分别为1.37 V、1.03 mA和0.04 mW/cm ^ 2 (1 K Ω)。它可以在110 s内将10 μ F电容充电至3 V,优于TENG和EMG。此外,它可用于自供电3D轨迹感测,涉及线圈阵列上方高度信息检测的能力。该器件在可穿戴电子和人机领域的应用具有巨大潜力。
简短的串联重复序列(STR)是在种群遗传学分析中广泛使用的高度信息遗传标记。它们是遗传脱位的重要来源,也可以产生功能影响。尽管有生物信息学方法可用于从整个基因组测序数据中对STR进行大规模全基因组基因分型,但它们以前尚未应用于来自大量疟疾寄生虫田间样品的大量集合数据。在这里,我们使用HIPSTR在3,000多个恶性疟原虫和174疟原虫中使用HIPSTR进行了基因分型STR,从全球收集的样品中发表了全基因组序列数据。最终的呼叫集中的噪声和可变性高,因此需要开发一种新型的STR基因型调用质量控制方法。一组高质量的str基因座(p。falciparum和p。vivax)用于研究疟原虫遗传多样性,种群结构和选择的遗传学特征,并将其与全基因组单核苷酸多态性(SNP)基因分型数据进行了比较。此外,p。含量的遗传变异和其他特征的全基因组信息。恶意和p。Vivax已在基于交互式Web的R Shiny应用程序PlasmoStr(https://github.com/ bahlolab/plasmostr)中可用。
a. 场地位置 b. 附近地图 c. 占用人/公司名称 d. 所有者名称 e. 承包商名称 f. 加盖 C-16 许可证号码 2. 下列设计标准应纳入审批计划中: a. 占用分类 b. 危险分类 c. 喷水灭火系统设计密度和喷水灭火系统工作区域 d. 每个喷水灭火系统喷头的允许覆盖区域和与墙壁的最大距离。 e. 安装时使用的任何特殊规则。(小房间规则等) f. 房间和区域标识/用途 g. 在建/改建区域的平方英尺数。 h. 工作范围 i. 现行规范参考 j. 任何天花板口袋或天窗都应在计划上用侧立面图和测量值/尺寸标明。 k. 提供正在进行工作的立管或地板底部的静压读数。 l. 如果新安装的喷水灭火系统喷头安装在与现有喷水灭火系统相同的隔间中,则提供现有喷水灭火系统和新喷水灭火系统喷头的切片,以验证喷水灭火系统喷头和设计特性的兼容性。 m在平面图上提供天花板高度信息。n. 拱腹、悬垂部分和/或障碍物应在平面图上标明尺寸,并应符合 NFPA 13 的要求。o. 标明受阻和/或未受阻的施工区域,以表明根据 NFPA 13 采取了适当的保护措施。
基因工程小鼠模型 (GEMM) 有助于我们了解人类病理并开发新疗法,但在小鼠身上忠实地重现人类疾病却具有挑战性。基因组学的进展凸显了非编码调控基因组序列的重要性,这些序列控制着许多人类疾病的时空基因表达模式和剪接 1,2 。包括需要大规模基因组工程的调控大范围基因组区域应该可以提高疾病建模的质量。现有方法限制了 DNA 传递的大小和效率,阻碍了我们称之为基因组重写和定制 GEMM(GREAT-GEMM)的高度信息模型的常规创建。在这里,我们描述了 8 哺乳动物逐步切换抗生素抗性标记以进行整合 9 (mSwAP-In),这是一种在小鼠胚胎干细胞中进行高效基因组重写的方法。我们展示了使用 mSwAP-In 对定制的 Trp53 基因座进行多达 115)kb 的迭代基因组重写,以及使用 116)kb 和 180)kb 人类 ACE2 基因座对小鼠进行人源化。ACE2 模型重现了人类 ACE2 的表达模式和剪接,值得注意的是,与现有的 K18-hACE2 模型相比,在受到 SARS-CoV-2 攻击时表现出的症状较轻,因此代表了一种更像人类的感染模型。最后,我们通过在 ACE2 GREAT-GEMM 中对小鼠 Tmprss2 进行双等位基因人源化,展示了连续基因组写入,突出了 mSwAP-In 在基因组写入方面的多功能性。
TRMM降水雷达(PR)是第一台星载降雨雷达,也是TRMM上唯一能够直接观测降雨垂直分布的仪器。TRMM PR的频率为13.8 GHz。PR可以实现陆地和海洋的定量降雨估计。PR还可以提供降雨高度信息,这对基于辐射计的降雨率反演算法很有用。PR的覆盖范围足够小,可以研究不均匀降雨对低频微波辐射计通道相对粗糙覆盖范围的影响。PR的主要设计和性能参数如表0-2所示[Kozu等,2001]。PR的观测几何如图0-1所示。在正常观测模式下,PR 天线波束在 ±17 的横向轨道方向上扫描,结果从一端到另一端的扫描宽度为 220 公里。PR 的天线波束宽度为 0.71 ,在 ±17 的扫描角度内有 49 个观测角度箱。当 TRMM 处于 350 公里的标称高度时,水平分辨率(覆盖区大小)在天底为 4.3 公里,在扫描边缘约为 5 公里。TRMM PR 的距离分辨率为 250 米,等于天底的垂直分辨率。对于每个观测角度箱,雷达回波采样是在海面和 15 公里高度之间的距离门上进行的。对于天底入射,还收集了高达 5 公里高度的“镜像”。此外,还部分收集了表面回波(扫描角度在 ±9.94 以内)和降雨回波(扫描角度在 ±3.55 以内,高达 7.5 公里)的“过采样”回波数据。这些过采样数据将用于精确测量表面回波水平和融化层结构。根据发射前地面测试和轨道测试确定,最小可检测 Z(对应于噪声等效接收功率)从 23.3 dBZ(基于规范要求)提高到 20.8 dBZ。这主要是由于发射功率增加和接收器噪声系数降低。