英国计量研究所操作该时钟并通过 150 公里的玻璃光纤链路将其频率传输到位于都灵的意大利国家计量研究所 INRIM,在那里使用第二台原子钟测量锶钟的频率。在 INRIM 对两个时钟进行第二次(后续)比较后,可以通过 LSM 和 INRIM 之间的高度差(约 1000 米)确定锶钟的频率变化。相对频率变化约为然后观察到 1 · 10 –13。通过将频率变化乘以光速的平方,可以得到潜在的电位变化。汉诺威大学此前已利用传统的测地线测量方法测定了重力势能的确切差异。两次测量的结果一致。
英国计量研究所操作该时钟并通过 150 公里的玻璃光纤链路将其频率传输到位于都灵的意大利国家计量研究所 INRIM,在那里使用第二台原子钟测量锶钟的频率。在 INRIM 对两个时钟进行第二次(后续)比较后,可以通过 LSM 和 INRIM 之间的高度差(约 1000 米)确定锶钟的频率变化。相对频率变化约为然后观察到 1 · 10 –13。通过将频率变化乘以光速的平方,可以得到潜在的电位变化。汉诺威大学此前已利用传统的测地线测量方法测定了重力势能的确切差异。两次测量的结果一致。
25. 在钢架雪车运动中,参赛者跳上雪橇(称为钢架雪车),然后沿着结冰的赛道滑行,腹部朝下,头部朝前。在 2010 年冬奥会上,赛道有 16 个弯道,从上到下的高度差为 126 米。(a)在没有非保守力(如摩擦力和空气阻力)的情况下,选手在赛道底部的速度是多少?假设滑行开始时的速度相对较小,可以忽略不计。(b)实际上,金牌得主(加拿大选手 Jon Montgomery)在一次预赛中就以 40.5 米/秒(约 91 英里/小时)的速度到达赛道底部。在这次预赛中,非保守力对他和他的雪橇(假设总质量为 118 公斤)做了多少功?
它们之间的引力红移,从而得出它们的高度差。这种研究方法是由德国科学基金会 (DFG) 合作研究中心 1128 (“geo-Q”) 的物理学家和大地测量学家共同开展的。当今最精确的原子钟基于光学跃迁。这种光学钟可以提供稳定的频率,分数不确定度仅为几个 10 –18 。这比实现时间单位 SI 秒的最佳铯喷泉钟精确约 100 倍。然而,使用卫星频率传输的时钟比较限制在 10 –16 附近的频率分辨率。为此,PTB 和巴黎两所法国研究所(空间参考系统、LNE-SYRTE 和激光物理实验室、LPL)的科学家多年来一直致力于光纤连接的研究。
摘要 激光雷达(lidar)技术的出现为三维建筑物检测提供了有前途的资源。由于去除植被的困难,大多数建筑物检测方法将激光雷达数据与多光谱图像融合以获取植被指数,而仅使用激光雷达数据的方法相对较少。然而,融合过程可能会导致分辨率和时间差异、阴影和高层建筑位移问题以及地理参考过程引入的误差。本研究提出了一种形态建筑物检测方法,通过逐步去除非建筑物像素来识别建筑物。首先,地面过滤算法将地面像素与建筑物、树木和其他物体分离。然后,分析方法使用大小、形状、高度、建筑物元素结构以及第一次和最后一次返回之间的高度差去除剩余的非建筑物像素。实验结果表明,该方法在奥斯汀市区的研究地点取得了不错的效果,总体准确率达到 95.46%。
潮汐能:潮汐能捕获潮汐运动产生的水体能量,并利用它来产生可再生电力。在河流的河口建造水坝或拦河坝或水下涡轮机。河流将潮汐汇入狭窄的水道,湍急的水流推动涡轮机转动。潮汐是由太阳和月亮的引力以及地球自转产生的多种力量共同引起的。水体或其运动中自然存在的能量可用于发电。这大致可以通过以下方式实现:1.潮汐能:利用低潮和高潮之间的“水头”(高度差)来形成类似于传统水电项目的瀑布。这利用了水体的势能。2.波浪能:利用波浪的动能(动态)来旋转水下动力涡轮机并在其上发电。这可以大致描述为水下风电场。3.热能:利用海洋的热能发电。这类似于地热发电,将地球表面的热量转化为电能。潮汐能方法的工作原理大致如下。当潮水涌上岸时,它会被拦在拦河坝后面的水库中。当潮水退去时,这些收集的水就会被释放出来,然后像常规水电项目一样被使用。为了使潮汐能方法有效发挥作用,潮差(高潮和低潮的高度差)至少应为 4 米(约 13 英尺)。潮汐能项目对场地的要求非常严格。盆地的地形质量也需要有利于发电厂的土木工程。潮汐能是一种清洁的机制,不涉及使用化石燃料。然而,环境问题主要与海岸的淤泥形成较多有关(由于阻止潮汐到达海岸并冲走淤泥)以及对潮汐盆地附近海洋生物的干扰。波浪能项目对生态的影响小于潮汐波浪能项目。在可靠性方面,人们认为潮汐能项目比利用太阳能或风能的项目更可预测,因为潮汐的发生是完全可以预测的。潮汐能的应用:中世纪时,人们使用小型潮汐磨坊来磨玉米。建造的拦河坝可作为更轻松地穿越河口的手段。潮汐能的主要应用是作为一种额外的手段来产生可再生、可持续的能源,而不会对环境产生负面影响。潮汐能的优点:1. 维护成本很低。2. 没有浪费或污染。3. 非常可靠。4. 我们可以预测潮汐何时涨落。5. 拦河坝有助于减少非常高的潮汐浪潮或风暴对陆地的破坏。缺点:1.它彻底改变了海岸线,河口被淹没,鸟类或动物栖息的任何泥滩或栖息地都被破坏。
摘要。结构化的光,在所有自由度下都量身定制复杂的光场,后来已成为高度主题,由一个复杂的工具包提出,包括线性和非线性光学元件。从光中删除不希望的结构的发达远不足以发达,主要利用了扭矩,例如,使用自适应光学器件或复杂通道的逆透射矩阵,都要求通过适当测量来完全表征失真。我们表明,空间结构的光中的扭曲可以通过非线性晶体中的差异产生来纠正,而无需已知的失真。我们使用多种畸变和结构化光模式(包括高阶轨道角动量(OAM)束)证明了方法的多功能性,显示出了原始未发生的磁场的出色恢复。为了突出此过程的功效,我们将系统部署到与OAM的准备和衡量通信链接中,即使传输通道高度差,也显示出最小的互动交谈,并概述如何将方法扩展到替代性实验方式和非线性过程。我们对光校正光的演示无需进行测量,开辟了一种对经典和量子结构光的无需测量误差校正方法,并在成像,传感和通信中直接应用。
摘要 业界采用三维 (3D) 微电子封装的趋势日益增长,这要求开发新的创新型故障分析方法。为此,我们的团队正在开发一种称为量子金刚石显微镜 (QDM) 的工具,该工具利用金刚石中的一组氮空位 (NV) 中心,在环境条件下同时对微电子进行宽视野、高空间分辨率的矢量磁场成像 [1,2]。在这里,我们展示了 8 nm 工艺节点倒装芯片集成电路 (IC) 中的二维 (2D) 电流分布和定制多层印刷电路板 (PCB) 中的 3D 电流分布的 QDM 测量结果。倒装芯片中 C4 凸块发出的磁场在 QDM 测量中占主导地位,但这些磁场已被证明可用于图像配准,并且可以减去它们以分辨芯片中微米级相邻的电流轨迹。通孔是 3D IC 中的一个重要组件,由于其垂直方向,因此仅显示 B x 和 B y 磁场,而使用传统上仅测量磁场 B z 分量(正交于 IC 表面)的磁强计很难检测到这些磁场。使用多层 PCB,我们证明了 QDM 能够同时测量 3D 结构中的 B x 、B y 和 B z 磁场分量,这对于在电流通过层之间时解析通孔产生的磁场非常有利。两个导电层之间的高度差由磁场图像确定,并与 PCB 设计规范相符。在我们为以下提供进一步 z 深度信息的初始步骤中
摘要。风电场的性能受到涡轮 - 摩擦相互作用的显着影响。通常,通过测量其Nacelle风速或使用涉及跨转子盘的一组离散点的数值方法来评估其Nacelle风速或通过评估其转子平均风速来对每个涡轮机进行量化。al-尽管文献中存在各种点分布,但我们引入了两种分析表达式,用于整合非轴对称的高斯唤醒,这解释了上游Turbine Yaw和Wind Veer产生的唤醒拉伸和剪切。分析溶液对应于将目标涡轮机建模为圆形执行盘和等效的矩形执行器盘。衍生的表达式具有多功能性,可容纳尾流源(上游涡轮机)和目标涡轮机之间的任何偏移和轮毂高度差。验证对转子平均的数值评估使用2000个下游位置的2000平均点置于尾流源的平均点,这表明在极端的veer条件下,在小/中度的逆转效应下,在小/中度的vever效应下,在小/中度的vever效应下两种分析溶液都具有出色的一致性。与使用16个平均点的矢量数值平均值相比,两种态解决方案在计算上都是有效的,而圆盘溶液的速度较慢约为15%,而矩形盘溶液的速度约为15%。此外,分析表达式被证明与多个唤醒叠加模型兼容,并且是可区分的,为推导分析梯度提供了基础,这对于基于优化的应用程序可能是有利的。