GNSS-Refreftectry(GNSS-R)是使用导航信号(包括GPS和欧洲等效伽利略)反射仪的一般术语。使用GNSS-R的优点是它使用轨道上的GNSS发射器,并且可以将轻量级,低功率接收器启动到空间相对成本效益。现有的卫星高度计虽然非常准确,但在100公里以下的尺度上没有足够的数量来对海洋进行采样。GNSS-反击仪接收器的星座将对可以收集的数据的数量进行三十倍改善。这样的星座将于2016年底作为NASA Cygnss任务的一部分推出,请观看下面的动画。
该机构的市场开发团队在 2012 年也取得了重大成果,不仅管理了大约 80 个 FP7 项目,还保持了对市场的敏锐认识: - 在航空市场,现在有超过 130 个支持 EGNOS 的进近程序。这些包括使用气压高度计的垂直引导 (LPV) 进近和垂直引导 (APV) 进近程序。- 卫星增强系统 (SBAS) 在精准农业领域和测量/测绘领域具有显著的渗透性。- 与收费公路协会有着共同的目标。- 现在超过 70% 的接收器型号支持 EGNOS,近 35% 支持伽利略。
传感器为每个测量参数生成数据。在某些情况下,直升机上已经安装了适当的传感器(例如发动机参数传感器、雷达高度计等),我们选择直接与该传感器接口以获取所需的信号。在其他情况下,安装专用传感器(例如飞行员控制位置传感器、攻角和侧滑传感器等)来测量感兴趣的参数。信号调节电路将每个传感器的各种输出(例如电压、频率、电阻等)转换为与 DAS 中的模拟到数字转换器兼容的直流电压。每个信号调节电路都设计有高输入阻抗,以防止传感器信号的负载并保持 DAS 和直升机之间的隔离。
表面。具有最小差频的频谱分量将对应于飞行的真实高度,而所有其他“尾部”频谱分量将降低雷达高度计的精度。这种不准确性的程度由拍频信号频谱的宽度决定。实际上,评估高度的最简单方法是测量频谱的中心,该频谱由拍频信号的零交叉计数器在时域中生成 [1, 8]。更精确的方法是基于对第一个频谱分量的评估,该分量通过使用傅里叶变换生成。因此,为了表示拍频信号的真实结构,模拟器的信号应由具有不同延迟和幅度的部分信号组成。一些表面模型在 [6, 8, 11] 中讨论。
• 飞行管理系统 • 飞行/任务显示系统 • 飞行指引仪装置 • 电子备用仪表系统 • 航空电子中继面板 • 数据传输系统 • 改进的数据调制解调器 • AN/APX-118 应答器系统 • 嵌入式 GPS/INS(EGI)装置 H-764GU • 风暴观测仪装置 WX-500 • 民用导航装置 AN/ARN-147(VOR/ILS/MB) • 无线电测向 AN/ARN-149(LF/ADF)系统 • 改进的平视显示器 AN/AVS-7 AVUM 水平仪 • 无线电装置 AN/ARC-231 系统 • 机载无线电系统(SINCGARS)AN/ARC-201 • 雷达高度计系统 AN/APN-209 • 信号检测器系统 AN/APR-39 • 激光探测装置 AN/AVR-2 • 空中数据系统 • 数字内部通信系统 • 蓝军跟踪系统 • 无线电转发 • 以太网交换集线器 •塔康
在长时间持续飞行期间提供稳定且极其准确的测量。压力高度是参考标准海平面压力 29.92Hg 的高度。由于气压会根据天气条件在当地发生变化,因此需要对测量的压力进行本地校正。此气压校正或气压高度参考当地气压,在 FL180 以下使用。飞行员只需拨入高度计或显示控制面板上的当地气压,即可控制应用于测量压力高度的校正量。此校正以以下几种形式之一发送到空气数据计算机:模拟电压、同步格式或数字。必须考虑的最终测量值是空气温度,它会影响许多计算。总空气温度 (TAT) 探头是一种方法,而简单的外部空气温度 (OAT) 探头是另一种方法。
引言航空业初期,驾驶依靠飞行员的感官判断。机载仪器逐渐出现(如高度计、空速指示器、指南针、人工地平仪等),驾驶舱也不断发展。20 世纪 70 年代引入了自动化系统 [1],例如飞行管理系统 (FMS)。这些自动化系统提高了安全性 [5, 10]、精确度和效率 [11]。然而,自动化也导致驾驶舱操作员数量的减少(目前为两名飞行员),从而改变了飞行员的任务。飞行员必须执行新的任务,如飞行计划、导航、性能管理和飞行进度监控 [12]。在很短的时间内,飞行员的任务变得更加被动,主要用于监控 [7, 9, 10]。
Doris首先携带于Spot-2卫星上,该卫星在1990年2月3日记录了Doris的第一个测量。Since then, the system has operated continuously on 18 satellites, including the space imaging satellites SPOT-2/3/4/5, Pleiades1A-1B, altimetry missions for ocean observations such as TOPEX-Poseidon, ENVISAT, Jason-1/2/3, HY-2A, Saral/AltiKa, Sentinel3-A/B, and also for hydrological monitoring and ice measurements with Envisat, Cryosat-2,Saral/Altika和Sentinel3-A/b。在最新任务(例如Sentinel-3A/3B)上,多丽丝系统可以达到8-10 mm RMS(根平方)的径向轨道精度。DORIS数据均用于卫星上的实时轨道确定,并且开发了精确的轨道,其潜伏期为两天到几周,用于与这些不同任务提供的高度计数据一起使用。
美国联邦航空管理局 (FAA)。联邦航空法规 (FAR)。91.3“机长的责任和权限”,91.119“最低安全高度:一般规定”,91.121“高度计设置”,91.123“遵守空中交通管制的许可和指示”,91.155“基本目视飞行规则最低天气要求”,91.157“特殊目视飞行规则最低天气要求”,91.175“在仪表飞行规则下起飞和降落”,91.185“仪表飞行规则操作:双向无线电通信故障”,97“标准仪表进近程序,子部分 C – TERPS 程序”,121.97“机场:所需数据”,121.117“机场:所需数据”,121.135“内容”,121.315“驾驶舱检查程序”,121.443“机长资格:航线和机场”, 121.445“机长机场资格:特殊区域和机场”,121.542“飞行机组人员职责”。2000 年 1 月 1 日。