石墨烯,在二维六边形晶格中排列的碳原子,自大约二十年前的实验发现以来,就引发了巨大的研究和应用兴趣。除了超薄外,这种神奇的材料还表现出许多有趣的特性,包括高电导率和导热率,高弹性,高机械强度等。在各种应用中,一个有前途的领域是基于石墨烯的电流设备,例如光电探测器,光电二极管和超材料。额外的石墨烯特征是可以通过通过电控改变其费米能量来积极控制其光学响应。在此模型中,我们首先演示了如何使用Kubo公式计算石墨烯的光电性。然后使用计算的电导率来对基于石墨烯的THZ超材料吸收器进行建模(图1)。由于石墨烯的原子厚度,其明确的体积建模在计算上是昂贵的。我们表明,可以使用过渡边界条件(TBC)将其视为2D表面,可以轻松避免这种情况。
摘要:我们提出了有关电子 - 电子散射的实验发现,其中具有可调的费米波载体,相互晶格矢量和带隙。我们在双层石墨烯(BLG)和HBN的高弹性对齐异质结构中实现这一目标。在半满点附近,对这些设备的电阻的主要贡献是由Umklapp Electron-电子(UEE)散射产生的,这使得石墨烯/HBN Moire ́设备的电阻明显大于非对齐的设备的电阻(在此处禁止UEE)。我们发现,UEE散射的强度遵循Fermi能量的通用缩放,并且在非单声道上取决于超晶格时期。UEE散射可以用电场调节,并受BLG层极化的影响。它具有强粒子 - 孔不对称;当化学电位在传导带中的电阻明显低于在价带中的电阻,这使得电子方案在潜在应用中更实用。关键字:Umklapp散射,双层石墨烯,Moire ́超晶格,层极化,棕色 - Zak振荡
抽象的低度全身性炎症是动脉粥样硬化心血管疾病(CVD)的关键病理生理成分,髓样细胞的长期激活被认为对这些作用至关重要。肥胖和相关的代谢并发症,包括高血糖和血脂异常血症可诱导先天免疫细胞及其骨髓祖细胞的持久性重新编程,从而导致动脉粥样硬化。在这篇综述中,我们讨论了先天免疫细胞在其功能,表观遗传和代谢特征上发生长期变化的机制,即使短期暴露于内源配体,这一过程也称为“受过训练的免疫力”。对受过训练的免疫力的不当诱导导致单核细胞和巨噬细胞中长期持久的高弹性和促进性变化的发展,这是动脉粥样硬化和CVD的发展的重要因素。对特定免疫细胞的知识以及参与训练免疫的涉及的独特细胞内分子途径将揭示可用于预防或治疗CVD的新型药理靶标。- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Keywords Atherosclerosis • Obesity • In fl ammation • Monocytes • Trained immunity
人类功能性脑连通性可以在时间上分解为高和低弹性的状态,定义为随着时间的流逝的大脑区域的共激活。具有特别高的共同相处的罕见状态已被证明可以反映固有功能网络结构的基本原理,并且是高度主题的。 但是,尚不清楚这种网络限制状态是否也有助于认知能力的个体变化,这些状态在很大程度上依赖于分布式大脑区域之间的相互作用。 通过引入一个新的基于特征向量的预测框架CMEP,我们表明,只有16个时间分离的时间范围(<10分钟10分钟的静止状态fMRI的1.5%)可以显着预测智力中的个体差异(n = 263,p <.001)。 根据以前的期望,个人的网络限制时间范围特别高,并不是预期的智能。 多个功能性脑网络有助于预测,所有结果在独立样本中复制(n = 831)。 我们的结果表明,尽管人类特异性功能连接的基本面可以从最高连接性的几个时间范围中得出,但需要时间分布的信息对于提取有关认知能力的信息是必需的。 此信息不仅限于特定的连接性状态,例如网络填充高弹性状态,而是在整个大脑连接时间序列的整个长度上都反映了。具有特别高的共同相处的罕见状态已被证明可以反映固有功能网络结构的基本原理,并且是高度主题的。但是,尚不清楚这种网络限制状态是否也有助于认知能力的个体变化,这些状态在很大程度上依赖于分布式大脑区域之间的相互作用。通过引入一个新的基于特征向量的预测框架CMEP,我们表明,只有16个时间分离的时间范围(<10分钟10分钟的静止状态fMRI的1.5%)可以显着预测智力中的个体差异(n = 263,p <.001)。根据以前的期望,个人的网络限制时间范围特别高,并不是预期的智能。多个功能性脑网络有助于预测,所有结果在独立样本中复制(n = 831)。我们的结果表明,尽管人类特异性功能连接的基本面可以从最高连接性的几个时间范围中得出,但需要时间分布的信息对于提取有关认知能力的信息是必需的。此信息不仅限于特定的连接性状态,例如网络填充高弹性状态,而是在整个大脑连接时间序列的整个长度上都反映了。
理查德·默里(Richard Murray)获得了学士学位1985年加利福尼亚理工学院电气工程学位和硕士学位 和Ph.D.分别于1988年和1991年获得加利福尼亚大学伯克利分别的电气工程和计算机科学学位。 他于1991年加入加州理工学院的教师机械工程,并在1993年帮助建立了控制和动力学系统计划。 在1998 - 99年间,默里教授休假,并在康涅狄格州哈特福德的联合技术研究中心担任机电系统系统主任。 返回加州理工学院后,默里(Murray)从2000 - 2005年开始担任加州理工学院(Caltech)的工程和应用科学部门主席(DEAN),2006年至2009年的信息科学技术总监(IST)和2008- 2009年的Interim Division主席。 他目前是加州理工学院的托马斯E.和多丽丝·埃弗哈特的控制与动力系统和生物工程教授,也是生物学和生物工程学的部门主席(BBE)。 Murray拥有隆德大学的荣誉博士学位,并且是美国国家工程学院的当选成员(2013年)。 他的研究是将反馈和控制应用于网络系统,并在生物学和自主权中应用。 当前的项目包括分析和设计生物分子反馈电路,反应性系统的离散决策协议的综合以及对自动系统的高弹性体系结构的设计。1985年加利福尼亚理工学院电气工程学位和硕士学位和Ph.D.分别于1988年和1991年获得加利福尼亚大学伯克利分别的电气工程和计算机科学学位。他于1991年加入加州理工学院的教师机械工程,并在1993年帮助建立了控制和动力学系统计划。在1998 - 99年间,默里教授休假,并在康涅狄格州哈特福德的联合技术研究中心担任机电系统系统主任。返回加州理工学院后,默里(Murray)从2000 - 2005年开始担任加州理工学院(Caltech)的工程和应用科学部门主席(DEAN),2006年至2009年的信息科学技术总监(IST)和2008- 2009年的Interim Division主席。他目前是加州理工学院的托马斯E.和多丽丝·埃弗哈特的控制与动力系统和生物工程教授,也是生物学和生物工程学的部门主席(BBE)。Murray拥有隆德大学的荣誉博士学位,并且是美国国家工程学院的当选成员(2013年)。他的研究是将反馈和控制应用于网络系统,并在生物学和自主权中应用。当前的项目包括分析和设计生物分子反馈电路,反应性系统的离散决策协议的综合以及对自动系统的高弹性体系结构的设计。Murray是三本教科书的合着者,他是Python Control Systems图书馆(Python-Control)的共同开发者,Tierra Biosciences的共同创始人,以及国防创新委员会的创始成员(2016-2020)。
摘要:审查了基于NBO 2的记忆,能量产生和存储薄膜设备的当前研究方面。溅射等离子体包含NBO,NBO 2和NBO 3簇,影响NBO 2的NU锻炼和生长,通常会导致纳米棒和纳米固定剂的形成。nbo 2(i4 1 /a)在1081 K到金红石(p4 2 /mnm)处进行莫特拓扑转变,从而产生电子结构的变化,这主要在回忆录中使用。Seebeck系数是控制热电设备性能的关键物理参数,但其温度行为仍然存在争议。尽管如此,它们在900 K以上的表现有效。由于尚未达到理论能力,因此有很大的潜力可以证明NBO 2电池,这可以通过未来的扩散研究来解决。功能材料的热管理,包括热应力,热疲劳和热休克,即使可能导致失败,也经常被忽略。NBO 2表现出相对较低的热膨胀和高弹性模量。NBO 2薄膜设备的未来看起来很有希望,但是需要解决一些问题,例如属性对应变和晶粒尺寸的依赖性,具有点和扩展缺陷的多个接口,以及与各种自然和人造环境相互作用,可以实现多功能应用和耐用性能。
带有光波导的分子发光材料在发光二极管,传感器和逻辑门中具有广泛的应用前景。但是,大多数传统的光学波导系统都是基于脆性分子晶体,该晶体限制了在不同的应用情况下的柔性设备的制造,运输,存储和适应。迄今为止,在同一固态系统中具有较高柔韧性,新型光学波导和多端口色调发射的光功能材料的设计和合成仍然是一个开放的挑战。在这里,我们已经构建了新型的零维有机金属卤化物(Au-4-二甲基氨基吡啶[DMAP]和DMAP),对于光学波导而言,弹性很小,损失系数很少。对分子间相互作用的理论计算表明,2分子晶体材料的高弹性是原始的,它是从其人字形结构和滑移平面的。基于2个晶体的一维柔性微脚架和Mn-Dmap的2维微板,具有多色和空间分辨光学波导的异质界面。杂合的形成机理是基于表面选择性生长,因为接触晶体平面之间的低晶格不匹配比。因此,这项工作描述了具有高灵活性和光学波导的基于金属壁的晶体异质结的首次尝试,从而扩展了用于智能光学设备(例如逻辑门和多路复用器)的传统发光材料的前景。
女性。12,13缺乏这种严重且令人衰弱的状况的理性治疗策略代表了紧迫的医疗需求。在大多数情况下,在潜在机制中,通过高弹性反应和临界神经蛋白的DYS调节的损伤似乎是最可能的情况。14 - 18小胶质细胞(大脑的免疫细胞)作为驻留巨噬细胞对感染和损伤的反应。19然而,这种所谓的神经浮动肿瘤可能会延长或过度,甚至会导致神经元损害。20 - 22我们先前报道了小胶质细胞反应性和神经元α-突触核蛋白(ASYN)的皮质积累的迹象,叙利亚金汉斯特人的脑反应性(ASYN)感染后14天(DPI),即,在19次缓解后14天(即DPI)。23,24这种动物模型是共同19的研究,由于其对原始病毒菌株的敏感性很高,并且对人类感染的敏感性很高,尤其是在发病机理,临床方面和性别差异方面。25 - 27 Asyn是一种高度丰富,可溶性和内在无序的突触前蛋白,在突触小囊泡胞吐作用中起作用。28最近,发现了ASYN的免疫调节作用。18然而,如果Asyn蛋白水平增加,例如响应损伤,则该蛋白可以汇总成具有潜在神经毒性能力的寡聚物和不溶性纤维。29,30
目标:CoVID-19患者中有一名患者患有严重的Covid-19感染;但是,特定原因尚不清楚。肥大细胞(MC)被SARS-COV-2激活。尽管直到最近才被认可,但MC激活综合征(MCA)通常是由于获得的MC克隆性,是一种具有炎症和过敏主题的慢性多系统疾病,估计患病率为17%。本文描述了一种新颖的猜想,解释了MCAS如何导致严重急性急性共卷19感染和慢性旋转后19疾病的倾向。方法:将/没有MCA的患者的COVID-19疾病观察与MCA的广泛临床经验进行了比较。结果:MCAS的患病率与COVID-19感染人群中严重病例的患病率相似。COVID-19的大部分超级闪光与MC激活可以驱动的频率的方式是一致的。对MCS活性或其介体的活性的药物初步观察到对COVID-19患者有帮助。作者治疗的MCAS患者均未发生严重感染,更不用说死亡了。结论:许多严重症状的COVID-19患者中的高弹性细胞因子风暴可能植根于MCAS的功能障碍MC对SARS-COV-2的非典型反应中,而不是正常MCS的正常反应。如果经过证明,该理论具有显着的治疗和预后意义。©2020作者。由Elsevier Ltd代表国际传染病学会出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nc-nd/4.0/)下的开放访问文章。
环氧玻璃二聚体代表了一类新的高性能可持续树脂,因为它们具有所需的机械和热延展性。不幸的是,由于机械鲁棒性,可回收性和R.T.的“冷冻”状态,现有的环氧玻璃二聚体无法在室温(R.T.)上进行自我修复(R.T.)。此处是通过固化双(2,3-环氧丙基)环氧基-4-烯1,2-二羧酸盐(DCNC),具有50 wt%的磷/硅/硅含量的聚乙基烯(ped-Ethylenemine in R.t ped),是一种高性能的超单血性环氧玻璃体玻璃体(DCNC/50PEDA)。将互补的动态非共价氢键和π-π堆积和共价β-羟基酯键集成到DCNC/50PEDA网络的高弹性分支单元中。此设计使玻璃二聚体具有室温的自愈合效率,高达96.0%,高机械强度达到36.0 mPa,并且所需的闭环回收能力。此外,它对各种底物的牢固粘附力和出色的火势粘贴,例如,有限的氧指数为39.0%,所需的UL-94 V-0等级使其成为适合火焰底物(例如木材)的出色的火涂层。这样的性能投资组合使DCNC/50PEDA的表现胜过现有的自我修复聚合物和玻璃二聚体。这项工作建立了一种有希望的互补动态设计协议,可通过整合动态的非共价互动和共价键来创建自我修复,强,可回收和火力安全的聚合物,这些键在工业中具有很棒的现实应用,例如散装材料,涂料,涂料和胶粘剂。