图 3 与心理工作量相关的大脑激活和停用。(a)统计参数图说明了 TNT 中心理工作量的主要影响。彩色条表示激活高度的 t 值(+ 10 至 � 10)。展示了在 2-back 与 0-back 期间激活增加(红色)和减少(蓝色)的皮质区域。为了便于说明,地图的阈值为 p < .001 FWE 校正。激活叠加在受试者的解剖 T1 扫描上,并标准化为标准 MNI 空间。ACC,前扣带皮层;PCC,后扣带皮层;DLPFC,背外侧前额叶皮层;DMPFC,背内侧前额叶皮层;PC,顶叶皮层(顶上回和顶下小叶);SMA,辅助运动区; VMPFC,腹内侧前额皮质。(b)条形图显示相对于静止条件,0-back 和 2-back 条件下峰值体素处 BOLD 信号增加/减少的百分比。标明了 MNI 坐标。该百分比是针对每个任务难度级别的所有区块(即安全和威胁)计算的。误差线为 SEM。浅灰色 = 0-back,中灰色 = 2-back
脑萎缩和白质高强度信号 (WMH) 与中风或多发性硬化症等疾病密切相关。自动分割和量化是人们所期望的,但现有方法需要具有良好信噪比 (SNR) 的高分辨率 MRI。这阻碍了其在临床和低场便携式 MRI (pMRI) 扫描中的应用,从而妨碍了对萎缩和 WMH 进展的大规模追踪,尤其是在 pMRI 具有巨大潜力的服务欠缺地区。在这里,我们提出了一种无需重新训练即可从任何分辨率和对比度(包括 pMRI)的扫描中分割出白质高强度信号和 36 个大脑区域的方法。我们在六个公共数据集和一个包含成对高场和低场扫描(3T 和 64mT)的私人数据集上展示了结果,其中我们获得了在两个场估计的 WMH(ρ =.85)和海马体积(ρ =.89)之间的强相关性。我们的方法作为 FreeSurfer 的一部分向公众开放,网址为:http://surfer.nmr.mgh.harvard.edu/fswiki/WMH-SynthSeg。
Harutoshi Yamada、Teruki Tsurimoto(筑波大学纯粹与应用科学研究生院)、Sirawit Pruksawan 和 Naito(筑波大学纯粹与应用科学研究生院、国家材料科学研究所)
摘要:结构电池正在引起人们的关注,并且可以在设计无排放的轻型防御和运输系统中发挥重要作用,例如飞机,无人驾驶汽车,电动汽车,公共交通,垂直起飞和着陆(VTOL) - 城市空中交通。这种综合功能的方法有助于总体质量减少,高性能和增强的车辆宽敞。目前的工作着重于开发和表征多功能结构钠电池电池组件,即使用高强度 - 强度的结构电解质(SE),该结构电解质(SE)通过在基于薄薄的(氧化乙烯)基于基于的乙二醇(氧化乙烯)的复合材料电解质层之间制备。结构电解质的电化学和机械特性表现出多功能性能,拉伸强度为40.9 MPa,离子电导率为1.02×10 - 4 s cm-1 60°C时在60°C时在60°C下使用0至4.5 v的电极式插入。 (CFS)针对结构电解质,其高抗拉力强度为91.3 MPa。制造的结构电池CF || SE || NA提供的典型能量密度为23 WH kg -1,并执行500个周期,同时保持80%的容量直至225个周期。在这项初步工作中对钠结构电池结构进行的研究表明,钠离子在中间模型型碳纤维电极中的插入显示,显示了具有出色的循环稳定性和结构强度的多功能性能,并为当前结构电池设计提供了替代路径。关键字:结构性钠电池,结构能量存储,多功能材料,碳纤维电极,多功能功率复合材料
单向取向结构在增强大孔材料性能方面表现出显著的效率,但难以以省时省钱的方式构建。本文利用一种简便的方法来制造取向大孔陶瓷材料,即采用天然石墨薄片作为易散性材料,并利用累积轧制技术优先使薄片在陶瓷基体内排列。在大孔氧化锆陶瓷中形成了分布均匀的片状至近椭圆形孔隙,通过控制石墨薄片的添加量可以调节其孔隙率和微观结构特征。所得材料表现出良好的性能组合,抗压强度高达 1.5 GPa 以上,超过了大多数其他具有类似孔隙率的多孔氧化锆陶瓷,同时热导率低至 0.92 – 1.85 Wm − 1 ⋅ K − 1 。这项研究为开发具有增强性能的新型定向大孔材料提供了一种简单的方法,并且可以通过轻松的大规模生产来促进其应用。
摘要:本研究旨在实现超细晶粒 (UFG) Al 2024 合金在低于传统商用铝合金 (400-500 ◦ C) 温度下的超塑性。室温下通过高压扭转在合金中产生的 UFG 结构平均晶粒尺寸为 100 nm,具有非常高的强度 - 显微硬度 (HV 0.1) 为 286 ± 4,偏移屈服强度 (σ 0.2) 为 828 ± 9 MPa,极限拉伸强度 (σUTS) 为 871 ± 6 MPa,断裂伸长率 (δ) 为 7 ± 0.2%。在温度为 190 至 270 ◦ C、应变速率为 10 − 2 至 5 × 10 − 5 s − 1 的情况下进行了复杂的拉伸试验,并确定了流变应力、总伸长率和应变速率敏感系数的值。结果表明,UFG 合金在 240 和 270 ◦ C 的试验温度下表现出超塑性行为。首次在 270 ◦ C(0.56 T m )的异常低温和 10 − 3 s − 1 的应变速率下实现了 400% 的伸长率。超塑性变形后的 UFG 2024 合金具有比标准强化热处理 T6 后的强度(150–160 HV)更高的强度。
摘要:跨域同步动能与网络作战带来“多重困境”,是多域作战的基本原则。然而,近期在战场上使用网络能力与动能作战的实践和研究表明,由于作战同步不足或缺乏对网络效应的协调和控制,难以产生联合效应。本文概述了在未来北约与势均力敌的对手的高强度冲突中开展综合网络和动能作战所需的三个要求:首先,军事物联网 (IoMT) 与人工智能 (AI) 支持的指挥和控制 (C2) 能力相结合,以实现综合网络和动能作战;其次,多域编队与网络司令部或其各自的组织对等机构相结合,以协调全战区网络战役;第三,基于分散决策和分散执行的网络任务指挥理论,以加快作战速度。该分析通过对美国、英国和德国三个国家的比较研究,评估了网络能力融入 2030 年高强度冲突多领域作战概念的现状。它还就技术能力、新的组织结构和理论变革提供了一套初步建议,以促进网络能力融入多领域作战概念。
抽象的高性能聚合物由于其低密度,良好的化学稳定性和出色的机械性能而在现代社会中在现代社会中增殖。然而,尽管聚合物被广泛应用,但由于其内在的浮雕性而引起的频繁发生的灾难对人类,经济和环境造成了巨大影响。最近对超分子化学进行了深入的研究,以通过物理屏障和超分子骨料的炭催化作用为聚合物提供粘贴性。在副层中,超分子和聚合物链之间的非共价相互作用,例如氢键,π–π相互作用,金属 - 实形配位和协同相互作用,可以使矩阵赋予矩阵具有增强的机械强度。这使得将物理化学特性和非共价相互作用整合到一个基于超分子骨料的高性能聚合系统按需中。但是,满足这些诺言需要更多的研究。在这里,我们概述了基于超分子结构和聚集体相互作用的最新研究进化的质量和高强度材料。这项工作回顾了他们的概念设计,表征,修改原理,表演,应用和机制。最后,还讨论了对未来研究的发展挑战和观点。
临床效果和安全性:包括76例患者的一个多中心RCT和13例非随机研究,共有1029名患者(总共)。所有研究都调查了药物难治性,中度至重度ET的患者。RCT将单方面MRGFU与假(安慰剂)和非随机研究比较了治疗前和治疗后评分(无对照组)。MRGFUS治疗的患者显示出较低的手震颤和残疾评分,并且与假患者相比,生活质量可能改善了治疗后三个月(摘要调查结果表)。很难根据可用文档来判断治疗效果的持续时间。非随机研究表明,有益的治疗效应在治疗后一年持续存在,但是我们在这些结果中的确定性很低。一些非随机研究还表明,治疗效果可能会持续到一年以上,但观察到随时间降低治疗效应的趋势(非常低的确定性)。mrgfus也与不良事件有关。不良事件很常见,但大多是轻度和瞬态的。最常见的不良事件是“异常或麻木”和“步态干扰”。这些事件发生在三分之一以上的患者中,在治疗后一年持续了大约十分之一的患者。
脊髓损伤(SCI)是中枢神经系统的严重疾病,其特征是患病率高和严重的残疾,对患者及其家人造成了重大负担。近年来,由于其优势,包括低成本,高安全性,易于实施和重大疗效,运动训练在SCI的治疗方面已变得突出。然而,关于各种运动训练方式和强度对SCI患者功能恢复的影响的共识仍然难以捉摸,与高强度运动训练(HIET)相关的功效和风险(HIET)是持续辩论的主题。一些研究表明,与中度或低强度的运动训练相比,HIET具有卓越的治疗益处,例如增强的心血管应激反射敏感性和增加神经营养因素的释放。尽管如此,HIT可能会带来风险,包括继发性伤害,炎症反应增强和跌倒。本研究回顾了HIET对SCI患者各种身体系统的正面和负面影响,重点介绍了神经可塑性和免疫调节等机制,以提供其前瞻性临床应用的理论基础和证据。此外,分析了现有研究的局限性,以告知未来研究的建议和指导。