在我负责“年度最佳船舶”评选的 15 年中,每年的技术飞跃都让我惊叹不已。对于一个通常被认为是传统且吸收新技术相当缓慢的行业来说,今年评选出的 16 艘“2006 年最佳船舶”在很大程度上消除了这些误解。封面船 Emma Maersk 是一艘令人惊叹的船舶,长 1,302 英尺,可承载 11,000 TEU。随着通过集装箱船技术将货物从“A 点到 B 点”的高效运输继续主导新船建造,Emma Maersk 实现了不久前许多人认为不可想象的愿景。正如可以预料的那样,随着韩国继续主导新船订单记录,其船舶也将主导本期的报道。韩国造船厂不再仅仅以生产散货船和油轮等流水线船舶而闻名,相反,该行业已迅速提升其竞争力,生产了许多价值更高的船舶系列,特别是大型集装箱船和顶级天然气船。尽管这一趋势以及中国大规模建设船舶建造基础设施的趋势可能会侵蚀传统欧洲造船强国的市场份额,但欧洲造船厂仍然在这里和我们的全年页面上占有重要地位,因为它们建造了许多高技术规格的船舶,包括诺里尔斯基镍业号,这是一艘双作用式集装箱船。
Ribatejo地区霍尔托工业作物的生产基于具有高技术干预的单一培养系统,这导致土壤生物多样性失衡,生育能力丧失和进行性降解。在这些系统中,在农业年主要农作物之前引入覆盖作物可以有助于改善生产系统的土壤状况和可持续性。目前的工作描述了在Ribatejo的两个现场试验中对土壤微生物指标的评估,其中安装了不同的覆盖作物:豆类和草的生物多样性混合物,包括接种根茎的三叶草;年度黑麦草(Lolium Multiflorum);和觅食萝卜(raphanus sativus)进行生物耗尽。在两个领域都保持了无覆盖作物的控制地块。评估集中于土壤酶活性(脱氢酶,碱性磷酸酶和β-葡萄糖苷酶)和几组微生物,包括总细菌,共生氮固定细菌(Rhizobia),散生氮的氮,磷酸细菌,磷酸化细菌 - 磷酸细菌 - 磷酸化磷酸化 - 磷酸化 - 磷酸化 - 磷酸化细菌溶质溶质 - 磷酸化盐溶质溶质溶剂溶质溶质溶剂溶质溶质溶质溶剂化磷酸化磷酸化细菌和磷酸化磷酸化磷酸化细菌和磷酸化磷酸化细菌。微生物。结果表明,土壤微生物活性增加和有益的微生物具有覆盖作物的趋势,尤其是豆类和草的生物多样性混合物以及每年的黑麦草。
a)一般信息A.1)关于该研究所的一般信息,该研究所被建立为1961年的Sardar Vallabhbhai区域工程技术学院(SVRCET)Surat,是区域工程学院(REC)之一,以授予技术教育。该研究所始于提供民用,电气和机械工程学士学位课程。印度政府宣布Sardar Vallabhbhai区域工程技术学院(SVRCET)Surat向Sardar Vallabhbhai国家技术学院(SVNIT)SURAT宣布,其状态为“被视为大学”,其状态为2002年12月4日。随着国立技术研究院法规2007年的颁布,该研究所获得了“国家重要性机构” W.E.F.的地位。2007年8月15日。该研究所现在提供11(11)B.Tech。学位课程,二十一(21)M.Tech。学位课程,三(03)五年综合硕士化学,数学与物理学的学位课程,一(01)五年综合B.Tech和M.Tech学位课程和业务分析业务硕士。Institute提供工程,科学,管理和英语的博士学位课程。研究所还提供所有工程学科中的M. Tech(R)。该研究所已被印度政府认可为M.Tech质量改进计划(QIP)中心之一。和Ph.D.研究所还建立了印度知识系统和整体教育中心以及部落技术发展中心。Institute愿景:成为传播全球可接受的教育,有效的工业培训和相关研究成果的领先技术机构之一。Institute Mission:成为全球接受技术教育卓越的中心,催化吸收,创新,扩散和转移高技术,从而提高所有利益相关者的质量。
它可以测量与任务相关的大脑活动模式相关的脑血液动力学变化。5 近年来,fNIRS 的应用开始从受控的研究实验室转向更自然的环境和现实世界的任务。6 – 8 fNIRS 的可穿戴和不受约束的使用为神经成像应用铺平了道路,例如,用于床边和家庭中监测大脑功能 9、10 或用于脑机接口 (BCI) 设置,以与机器人设备结合使用来协助神经障碍者在日常生活活动中。11 – 13 此类应用需要满足高技术要求的尖端 fNIRS 系统[例如,高信噪比 (SNR)、快速信号处理和消除运动伪影的功能]和可用性(例如,高舒适度和准确的传感器放置)以捕捉日常生活环境中大脑活动的细微变化。 7、14此外,家庭和临床脑活动监测对 fNIRS 测量的稳健性和可靠性/可重复性提出了很高的要求,因为这些因素直接影响灵敏地捕捉神经变化和准确控制 BCI 外部设备的能力。虽然在群体层面上已经发现了良好的可重复性,15-17这足以回答许多研究问题,但尚未提供个人在多天内可重复的 fNIRS 测量的证据。因为单级可重复性对大多数临床和日常应用都至关重要,所以彻底表征它是必不可少的。预计会影响 fNIRS 测量可重复性的主要因素是硬件的信号质量(即 SNR)、18、19 光极的放置和固定、18、20
本文提供了有关起落架结构健康监测 (SHM) 系统开发的信息,该系统通过直接负载测量以及支柱维修检测算法提供预测/诊断 HUMS 功能。该系统通过将新传感器集成到起落架组件中来提供先进的监测技术。直接负载测量方法是当前跟踪机身起落架系统和机身支撑结构疲劳损伤方法的范式转变,这些方法依赖于 SHM 设备以各种采样率在机上记录的飞机参数数据收集。起落架 SHM 提供直接负载测量、重量/平衡计算以及对起落架组件执行基于条件的维护 (CBM) 的能力。NAVAIR 与 ES3 签订合同,通过小型企业创新研究 (SBIR) 计划(通过 N121-043 主题的第二阶段奖励)支持起落架 SHM 的开发。提议的解决方案将直接转移到其他海军、军用和商用飞机平台。本文将讨论 HUMS 和 CBM 领域的以下主题:(1) 用于直接负载测量的先进起落架传感器;(2) 将直接负载监测数据融合到疲劳寿命评估中;(3) 利用支柱维修检测算法实现飞机维护的范式转变;(4) 系统验证和确认;(5) 安全和维护效益。频谱开发和使用监测领域的先前工作通常侧重于飞机结构,将假设转化为起落架组件,而无需任何直接测量。使用监测的好处也可以用于起落架。直接载荷测量能够延长使用寿命、根据实际载荷移除部件、提高安全性、增加飞机可用性,并将 CBM 数据纳入维护实践,从而节省维护成本。本文通过对在高技术就绪水平 (TRL) 下适用于严酷起落架环境的传感器进行小型化,推动了最新技术的发展。
高性能科学卫星的可持续发展之路 高性能科学卫星目前是政府资助机构的专属领域。Twinkle 太空任务背后的团队正在开发一种新型小型可持续科学卫星,利用商业太空领域的最新创新。 太空机构执行的科学任务对科学和社会产生了变革性影响。旅行者号等任务揭示了有关我们太阳系及其他地区的宝贵信息,而 Envisat 等地球观测卫星则提供了证实全球变暖的长期温度趋势。这些开创性的任务带来了无数发现,并为太空仪器设定了高技术标准。 哈勃和斯皮策太空望远镜以及 XMM-Newton 等一般空间科学观测站通常涵盖多种科学用例。这些卫星内的高性能科学仪器通常需要为每个任务专门开发的复杂而尖端的技术。由于开发时间长且实施成本高,与商业地球观测等其他领域相比,运行中的科学卫星数量相对较少。因此,到目前为止,科学界不得不在大量超额认购的太空望远镜上争夺时间。地面观测和新的小型机器人望远镜网络通常更容易获得,设施由政府间和私人组织建造和管理。许多这样的设施已经开发出创新的数据访问模型,包括出售望远镜“夜晚”和基于会员制的调查合作模型。随着时间的推移,社区已经习惯了这种新方法,购买“望远镜时间”的资金补助也随之增加。不幸的是,地面观测有其自身的挑战和局限性,由于地球大气的吸收和散射,大部分电磁波谱被阻挡。此外,天空和望远镜的热背景变化很大,使得在红外波长下无法进行高精度的地面观测。太空仪器可以克服这些问题,但众所周知,将卫星送入太空既困难又昂贵。全球许多大学和研究机构都通过建造内部科学“立方体卫星”(质量为几公斤 1 的卫星)来挑战当前模式。然而,与立方体卫星格式兼容的仪器通常太小,无法解决广泛的科学问题。到目前为止,这些问题只能通过政府机构建造的旗舰任务来解决。
岩土评估 弃土管理规划 最佳资产设计 技术可行性 财务可行性 规划和环境过程 对用水者的影响 完成这些评估将使 Origin 详细了解扩建 Shoalhaven 抽水蓄能计划的可行性,并确保扩建设计符合高技术、环境和商业标准。 根据资助协议的条款,Origin 需要提交三份知识共享报告,其中两份供公开发布,一份商业敏感报告供 ARENA 内部考虑。 2019 年 2 月,Origin 提交了第一份知识共享报告。该报告详细介绍了支持在澳大利亚开发抽水蓄能 (PHES) 所需的市场和商业考虑因素。 第二份公开报告概述了全面可行性研究的结果。该研究确定增加一个 235MW 装置在技术上是可行的。与现有设计相比,由于自最初建造以来技术不断进步,该项目可使用一台可逆式 235MW 弗朗西斯机进行。岩土条件表明该项目区域可行,并且不存在电网连接或其他技术问题,不会完全阻碍项目的发展。然而,研究还确定,在当前的经济和监管条件下,该计划的扩展在商业上不可行。虽然有机会在 NEM 中获取套利价值,特别是随着不可调度可再生能源的渗透率不断提高,以及利用 Shoalhaven 现有的抽水蓄能和水坝基础设施来开发具有竞争力的“棕地”机会的好处,但这些并不能抵消该项目的商业风险。值得注意的是,该项目的资本成本明显高于预可行性研究中的预测,并且受汇率波动的影响。此外,NEM 中 PHES 项目产生的收入可能会受到 Snowy 2.0 的开发以及 FCAS 市场电池的影响的重大影响。 Origin 已暂停该项目的开发;但是,在影响 Shoalhaven 抽水蓄能计划的经济和监管环境发生有利变化之前,附加机组仍是进一步勘探的一个选择。Origin 将继续考虑将该扩建项目作为未来开发的一个选择。
1。东盟科学,技术与创新部长级会议(ARMMSTI)实际上于2023年2月14日举行。H.E. Brunei Darussalam和H.E.运输和Infocmunications部长的Pengiran Dato Seri Setia Shamhary Mustapha 俄罗斯联邦科学与高等教育代理部长Airat Gatiyatov共同主持了会议。 2。 我们回顾了26年来东盟 - 俄罗斯对话关系的里程碑和成就,包括2023年东盟 - 俄罗斯战略合作伙伴关系成立5周年,并重申打算加强东盟成员国与俄罗斯联邦之间的战略伙伴关系,以实现该地区的可持续经济发展。 3。 我们就STI领域的国家优先事项和最佳实践交换了观点,并进一步承认ARWGSTI是自1997年以来东盟 - 俄罗斯STI活动管理和协调的主要机制。。H.E.Brunei Darussalam和H.E.运输和Infocmunications部长的Pengiran Dato Seri Setia Shamhary Mustapha俄罗斯联邦科学与高等教育代理部长Airat Gatiyatov共同主持了会议。2。我们回顾了26年来东盟 - 俄罗斯对话关系的里程碑和成就,包括2023年东盟 - 俄罗斯战略合作伙伴关系成立5周年,并重申打算加强东盟成员国与俄罗斯联邦之间的战略伙伴关系,以实现该地区的可持续经济发展。3。我们就STI领域的国家优先事项和最佳实践交换了观点,并进一步承认ARWGSTI是自1997年以来东盟 - 俄罗斯STI活动管理和协调的主要机制。4。我们赞扬东盟的实施 - 俄罗斯的科学与技术合作年度(ARYSTC 2022)。Arystc 2022实际上是在2022年2月14日启动,并成功实施了52项倡议,涵盖了生物技术;粮食安全和可持续农业;水资源和水处理技术;微电子和信息技术;气象和地球物理;环境管理;能源技术和更新能源;太空技术和应用;核技术;高技术保健;和社会科学。5。在Armmsti举行的闭幕式,正式关闭Arystc2022。库存东盟和俄罗斯在加强STI合作方面的广泛措施和努力时,我们在东盟 - 俄罗斯科学,技术与创新行动计划(ARPASTI)的框架内指出了东盟 - 俄罗斯联邦合作(ARPASTI)2016- 2025
深水地平线 (DWH) 大规模和持续性漏油事件对应急响应能力提出了挑战,需要在天气和操作层面进行准确、定量的石油评估。尽管经验丰富的观察员是溢油应急响应的中流砥柱,但训练有素的观察员人数很少,而且天气、石油乳化和场景照明几何等混杂因素也带来了挑战。广泛的机载和星载被动和主动遥感技术辅助了 DWH 溢油和影响监测。油膜厚度和油水乳化比是控制/清理的关键溢油响应参数,对于厚 (>0.1 毫米) 油膜,这些参数是从 AVIRIS(机载可见光/红外成像光谱仪)数据中定量得出的,使用基于近红外光谱吸收特征的形状和深度的光谱库方法。MODIS(中分辨率成像光谱仪)卫星,可见光谱宽带数据,表面浮油对太阳反射的调制,允许推断总浮油。多光谱专家系统使用神经网络方法提供快速响应厚度类别图。机载和卫星合成孔径雷达(SAR)提供全天空条件下的天气数据;然而,SAR 通常无法区分厚(>100 μ m)的油膜和薄油膜(至 0.1 μ m)。UAVSAR(无人驾驶飞行器 SAR)的信噪比显著提高,空间分辨率更高,可以成功区分与油膜厚度、表面覆盖率和乳化程度相结合的模式。使用 AVIRIS 研究了现场燃烧和烟羽,并证实了星载 CALIPSO(云气溶胶激光雷达和红外路径探测卫星观测)对燃烧气溶胶的观测。CALIPSO 和水深测量激光雷达数据记录了浅层地下石油,尽管需要辅助数据进行确认。机载高光谱、热红外数据具有夜间和阴天收集优势,并且与 MODIS 热数据一样被收集。然而,解释挑战和缺乏快速反应产品阻碍了其大量使用。快速反应产品是响应利用的关键——数据需求对时间至关重要;因此,高技术准备水平对于遥感产品的运营使用至关重要。DWH 的经验表明,开发和投入使用新的溢油应急遥感工具必须先于下一次重大石油泄漏事件发生。© 2012 Elsevier Inc. 保留所有权利。
在使用更新的用户界面重新访问功能或从新的,复杂或使用较少的应用程序中的错误重新介绍时,很少会寻求正式支持[29,34]。相反,老年人可以使用试用方法,咨询YouTube视频,或者寻求朋友和家人的社会支持[29,33,34]。在最近的一项研究中,23名老年人中有16名(他们既不是移动技术使用的绝对初学者也不是专家),报告说从未在其移动设备上使用帮助菜单[34]。这种趋势反映了使用说明手册[2,11,25,29,40]的范式转变。相反,老年人在持续移动使用期间广泛使用两种类型的技术支持,自我探索[34],反复试验[23,29]或“播放” [41] [41])和社会支持[33,34]。为了满足老年人不断变化的技术支持偏好,新的支持工具正在出现[8,17,38,45]。同样重要但探索较少的是老年人个性,生活经验和一般学习偏好的异质性如何影响他们的技术支持选择。有些人可能更喜欢自我探索,而有些人则在继续移动使用期间寻求社会支持[29,34,35]。即使人们喜欢一种技术支持,他们也可能不会认为它是有效的或高质量的[34]。技术支持可以在确保老年人积极地体验技术方面发挥重要作用[1]。积极的经验可以在老年人中提高技术使用的信心[1,3]。充满信心,老年人更加开放探索和使用新的应用程序,功能和服务。在继续使用期间,积极的情绪反应不仅是由技术的有用性和易用性触发的,而且还可以易于学习使用它及其技术支持的质量[26,33,34]。例如,已显示结构化计算机课程可以增加自我报告的信心,并减少计算机使用过程中的焦虑,例如在网上查找健康信息时[6]。计算机焦虑症可以预测老年人的计算机使用广度[9,10],这可能是由于年龄刻板印象所引起的,即老年人的技术能力少于年轻人的技术能力[24]。由于这种刻板印象的威胁,使用移动应用程序后,老年人可能会感到年龄较大,尤其是当这些应用程序不熟悉时[5]。焦虑和信心构成了与一般学习相关的各种感觉的末端[20]。我们还知道,这些感觉会影响老年人的技术吸收和使用[9,24,34,42]。但是,他们在老年人的技术支持选择中的作用仍然未知。基于过去的工作,我们假设: