hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
图2。(a,b)从ANCRE报告124(允许)中提取的电力部门中的脱碳化楔形,并考虑了每个国家 /地区最雄心勃勃的场景; “全球范围”是指16个最著名的国家。这些直方图显示了在没有任何技术进化的情况下电力部门的发射轨迹,并且(灰色)在脱碳场景框架内发射的演变;两种核心对允许不同技术的降低(例如,黄色和橙色的太阳能,蓝色的水力)之间的差异; CCS意味着碳捕获和隔离。可以在参考文献126中找到“脱碳楔”方法的进一步描述。
在机器人臂轨迹模仿学习领域,高斯混合模型被广泛用于捕获复杂轨迹特征的能力。但是,利用这些模型的一个主要挑战在于初始化过程,尤其是在确定高斯核的数量或K值时。K-Value的选择显着影响模型的性能,而传统方法(例如基于经验知识的随机选择或选择)通常会导致次优结果。为了应对这一挑战,本文提出了一种用于机器人臂的新型轨迹学习方法,该方法将高斯混合模型与K值选择算法相结合。所提出的方法利用肘法的原理以及指数函数,校正项和权重调整的特性,以确定最佳的K值。接下来,使用最佳的K值应用K-均值聚类来初始化高斯混合模型的参数,然后通过预期最大化算法进行完善和训练。然后将所得的模型参数eTers用于高斯混合物回归中,以生成机器人的臂轨迹。通过使用二维理论非线性动态系统和使用实际机器人臂数据的物理实验的模拟实验来验证所提出方法的有效性。这些结果表明,所提出的方法显着提高了机器人臂轨迹产生的准确性和效率,从而为改善机器人操纵任务提供了有希望的解决方案。实验结果表明,COM占据传统的高斯混合模型方法,所提出的方法将轨迹精度提高了15%以上,如降低平均绝对误差和根平方误差所示。
简介。- 一词“结构化光”是指具有非平凡且有趣的幅度,相位和/或极化分布的光场。大量工作已致力于生产结构化的光场,从而导致了新技术的发展和改进现有技术[1,2]。也许结构化光的最著名示例对应于携带轨道角动量的梁,广泛用于从量子光学到显微镜的应用中[3,4]。当前的工作着重于所谓的结构化高斯(SG)梁的结构梁的子类[5-8]。这些对近似波方程的解决方案具有自相似的特性,这意味着它们的强度曲线在传播到缩放因子时保持不变。sg梁包括众所周知的laguerre-gauss(lg)和雌雄同体 - 高斯(HG)梁[9],它们一直是广泛研究的主题,用于许多应用中的模态分解,例如模式分类和分量额定定位[10-13]。lg和Hg梁属于更广泛的SG梁,称为广义的Hermite-Laguerre-Gauss(HLG)模式[14,15],可以使用适当的圆柱形透镜(Attigmatic Translions)[16]来从HG或LG梁上获得。这些模式可以表示为模态Poincar´e球的表面上的点(MPS)[17-19],如图1。这种表示形式导致了这样的见解:这些梁可以在一系列散光转换上获得几何阶段[7,20 - 23]。HLG模式的MPS表示揭示了其固有的组结构和转换属性。这种结构的概括是将模态结构和极化混合[24]。但是,没有为无限的
使用来自几何力学的原理构建的机器人运动的数据驱动模型已显示[Bittner,Hatton等。2018; Dan Zhao,Bittner等。2022; Hatton等。2013]为各种机器人提供机器人运动的有用预测。对于具有有用数量DOF的机器人,这些几何力学模型只能在步态附近构建。在这里,我们展示了如何将高斯混合模型(GMM)用作流形学习的一种形式,该形式学习了几何力学“运动图1”的结构,并证明了:[i]与先前发表的方法相比,预测质量的可观改善; [ii]可以应用于任何运动数据集的方法,而不仅仅是周期性步态数据; [iii]一种预先处理数据集以促进在已知运动图是线性的地方外推的方法。我们的结果可以在数据驱动的几何运动模型的任何地方应用。
摘要 处理具有非经典光子统计的简单有效的光子态源对于实现量子计算和通信协议至关重要。在这项工作中,我们提出了一种创新方法,与以前的提案相比,该方法大大简化了非高斯状态的制备,利用了现代量子光子学工具提供的多路复用功能。我们的提案受到迭代协议的启发,其中多个资源一个接一个地组合在一起以获得高振幅的复杂输出状态。相反,在这里,协议的很大一部分是并行执行的,通过使用沿与所有输入模式部分重叠的模式的单个投影测量。我们表明,我们的协议可用于生成高质量和高振幅的薛定谔猫状态以及更复杂的状态,例如纠错码。值得注意的是,我们的提案可以用实验中可用的资源来实现,突出了它的直接可行性。
新型视图合成由于基于越来越强大的NERF和3DGS方法而经历了重大进步。但是,反光对象的重新构造仍然具有挑战性,缺乏适当的解决方案来实现实时,高质量的渲染,同时适应反射。为了填补这一空白,我们引入了一个反光的高斯裂(ref-gaussian)框架,并具有两个组件:(i)基于物理的递延渲染,通过公式化的分裂近似来赋予像素级材料的渲染方程; (ii)首次意识到高斯跨度范式内的反射函数的高斯基间反射。为了增强几何形状建模,我们进一步引入了材料感知的诺尔传播和初始的人均阴影阶段,以及2d gaus-sian原始阶段。在标准数据集上进行的广泛实验表明,在定量指标,视觉质量和计算效率方面,参考文献超过了现有方法。此外,我们表明我们的方法是反射性场景和非反射场景的统一解决方案,超越了以前的替代方案,仅着眼于反思场景。另外,我们说明Ref-Gaussian支持更多的应用程序,例如重新设计和编辑。
o资源需求必须在百万Core-H或Exa-Flop(EFLOP)中指定。1 o节科学目标请填写“仔细计算时间的其他应用程序” - 不完整的信息可能会导致资源的大量削减,甚至导致拒绝提案。请仅以在线形式提供此信息,而不是在项目描述中提供此信息。o节上传文件,请在此处以PDF格式上传您的详细项目描述。请使用Word,Latex和PDF中可用的模板。请注意,描述的大小限制为20页(字体尺寸11pt)和60MB。o截面最终确定完成后,您将再次将其引向应用程序列表。在这里,您可以在“最终应用程序”列表中找到此应用程序。请使用“打印”按钮打印申请表,签名表格并将其发送到协调办公室,以通过电子邮件(coordination-office@gauss@gauss@gauss-centre.eu)分配计算时间。11。为成功项目的计算资源提供了木星的生产开始,并且是
本文基于与归一化采样的高斯核或综合高斯内核的卷积,对高斯衍生物的两种混合离散方法的性质进行了分析。研究这些离散方法的动机是,在相同规模水平上需要多个阶的多个空间衍生物时,与基于更直接的衍生近似值相比,它们基于基于更直接的衍生近似值而具有更高的效率相比,它们基于具有较高的衍生性速率,以示例性衍生性衍生性不能衍生性不能进行。我们根据定量绩效指标来表征这些混合离散方法的特性,同意它们所暗示的空间平滑量,以及它们从量表 - 流动特征探测器的相对一致性以及从自动量表选择中获得的量表的相对一致性,从尺度上的量表与尺度相关的量度相差很大,该尺度的范围与尺度的相差相差,该尺度的尺度是有效的。理论以及不同类型的离散方法之间。在设计和解释以非常精细的水平运行的规模空间算法的实验结果时,提出的结果旨在作为指导。
假设检验 (HT) [1] 和量子假设检验 (QHT) [2] 在信息 [3] 和量子信息论 [4] 中发挥着至关重要的作用。HT 与通信和估计理论都有着根本的联系,最终是雷达探测任务的基础 [5],而雷达探测已经通过量子照明 (QI) 协议 [6, 7] 扩展到量子领域,更准确地说,通过微波量子照明模型 [8](有关这些主题的最新综述,请参阅参考文献 [9])。HT 和 QHT 最简单的场景是二元决策,因此它们可以简化为两个假设(零假设 H 0 和备选假设 H 1 )之间的统计区分。从最基本的层面上讲,量子雷达是一项二元 QHT 任务。两个备选假设被编码在两个量子通道中,信号模式通过这两个量子通道发送。根据目标是否存在,信号模式的初始状态会经历不同的变换,从而在输出端产生两个不同的量子态。最终的检测就简化为区分这两种可能的量子态。能否以较低的错误概率准确地做到这一点,与能否确定正确的结果直接相关。这一基本机制可以轻松地通过几何测距参数进行增强,这些参数可以量化与目标的往返时间,即目标的距离。虽然 QI 雷达可能实现最佳性能 [10],但它们需要生成大量纠缠态,这可能是一项艰巨的任务,特别是如果我们考虑微波区域的话。同时,量子雷达的定义本身可以推广到 QI 以外的任何利用量子部件或设备在相同能量、范围等条件下超越相应经典雷达性能的模型。在这些想法的推动下,我们逐步放宽 QI 的纠缠要求,并研究相应的检测性能,直到源变得刚好可分离,即