扩散模型(DM)已成为最先进的模型,因为它们在没有对抗性训练的情况下从噪音中产生高质量图像的能力。但是,正如最近的研究报道的那样,它们容易受到后门攻击的影响。数据输入(例如,一些高斯噪声)用扳机盖章(例如,一个白色补丁),后do的模型始终生成目标图像(例如,一张不正确的照片)。但是,从DMS中减轻后门的有效防御策略没有充满反感。为了弥合这一差距,我们提出了第一个DMS的后门检测和重新移动框架。我们在包括DDPM,NCSN和LDM在内的数百多种DM上评估了我们的框架E Li -Jah,并使用13个采样器对3个现有的后门攻击进行了评估。广泛的实验表明,我们的方法可以接近100%的检测准确性,并将后门效应降低至接近零,而无需显着牺牲模型效用。
DDS-3X25任意波形发生器具有1路任意波形输出,12位输出,同步信号输出,1路计数器/频率测量输入,6位输入和外部触发输入。用户可以通过鼠标任意编辑波形,也可以选择正弦波、方波、三角波、锯齿波、TTL、白噪声、高斯噪声、梯形波、指数波、AM、FM等常规波形。幅度、频率、偏移等参数也可设置。DDS-3X25的数据格式与泰克完全兼容,可以直接读取泰克示波器或泰克波形编辑软件生成的波形数据文件并重新显示波形。DDS-3X25采用DDS技术,具有频率精度高、波形分辨率高、可靠性高、软件支持范围广等优点。可广泛应用于各类电子实验室,并提供完善的二次开发接口,可轻松插入其他自动测量系统。
我们考虑了两方使用的量子继电器,以执行几种连续变化的量子通信方案,从纠缠分布(交换和蒸馏)到量子传送,以及量子键分布。这些方案的理论适当地扩展到了一个非马克维亚的脱位模型,其特征在于玻色子环境中相关的高斯噪声。在最坏的情况下,双方纠缠在继电器中完全丢失了,我们表明,通过环境中的经典(可分离)相关性可以重新激活各种协议。实际上,这些相关性能够保证较弱的纠缠形式(Quadripartite)的分布,该分配可以通过继电器将其定位为较强的形式(双方),而当事方可以利用。我们的发现是由原则证明实验确定的,在第一次我们表明环境中的记忆效应可以大大增强量子继电器的性能,远远超出了单一重型仪的量子和私人通信。
本文介绍了一种新的经验方法,即交叉环境超参数调谐基准,该方法使用单个超参数设置比较了环境之间的RL算法,从而鼓励算法开发对超级参数不敏感。我们证明,即使使用了很少的样品,这种基准对统计噪声具有鲁棒性,并且在重复的范围中获得了定性相似的结果。这种鲁棒性使得基准计算上的计算便宜,从而可以以低成本的统计良好见解。我们在一组六个小型控制环境(SC-CHTB)以及28个环境(DMC-CHTB)的整个DM控制套件上演示了CHTB的两个示例实例。最后,为了说明CHTB对现代RL算法的适用性,我们对连续控制文献中的一个开放问题进行了新的经验研究。我们充满信心地表明,Ornstein-Uhlenbeck噪声和不相关的高斯噪声在DMC-CHTB上使用DDPG算法探索没有有意义的差异。
开发了使用粒子滤波器(递归蒙特卡罗方法)解决定位、导航和跟踪问题的框架。提出了一种粒子维度简约的通用算法。汽车和航空应用从数字上说明了与基于卡尔曼滤波器的传统算法相比的优势。这里使用非线性模型和非高斯噪声是准确度提高的主要原因。更具体地说,我们描述了如何使用地图匹配技术将飞机的海拔剖面图与数字海拔地图进行匹配,将汽车的水平行驶路径与街道地图进行匹配。在这两种情况下,都可以实时实现,测试表明,其准确度可与卫星导航(如 GPS)相媲美,但完整性更高。基于模拟,我们还讨论了粒子滤波器如何用于基于手机测量的定位、飞机的综合导航以及飞机和汽车的目标跟踪。最后,粒子滤波器为导航和跟踪的组合任务提供了一个有希望的解决方案,这在空中搜寻和汽车防撞上都有所体现。
量子机器学习是最有希望获得实际优势的研究领域之一,它是量子计算和传统机器学习思想相互影响的产物。在本文中,我们应用量子机器学习 (QML) 框架来改进金融数据集中普遍存在的噪声数据集的二元分类模型。我们用来评估量子分类器性能的指标是受试者工作特征曲线下面积 (ROC/AUC)。通过结合混合神经网络、参数电路和数据重新上传等方法,我们创建了受 QML 启发的架构,并利用它们对非凸二维和三维图形进行分类。对我们的新 FULL HYBRID 分类器与现有量子和经典分类器模型进行广泛的基准测试表明,与已知的量子分类器相比,我们的新模型对数据集中的非对称高斯噪声表现出更好的学习特性,并且对于现有的经典分类器表现同样出色,并且在高噪声区域内比经典结果略有改善。
在没有监管护栏的情况下,图像生成人工智能 (AI) 工具的民主化放大了互联网上原有的危害。互联网上 AI 图像的出现始于生成对抗网络 (GAN),这是一种神经网络 1,包含 (1) 创建图像的生成器算法和 (2) 评估图像质量和/或准确性的鉴别器算法。通过生成器和鉴别器之间的几轮协作,最终生成 AI 图像 (Alqahtani、Kavakli-Thorne 和 Kumar,2021 年)。ThisPersonDoesNotExist.com 是由 Uber 工程师创建的网站,可生成逼真人物的 GAN 图像,于 2019 年 2 月推出,令观众惊叹不已 (Paez,2019 年),对广泛诈骗和社会工程等滥用领域的利用具有严重影响。这只是 AI 生成的图像及其在互联网上的利用的开始。随着时间的推移,AI 图像生成逐渐从 GAN 发展到扩散模型,这种模型可以生成比 GAN 更高质量、更多样的图像。扩散模型的工作原理是将高斯噪声 2 添加到原始训练数据图像中
量子反应是由于系统与其环境之间无法控制的纠缠而产生的。然而,经常通过更简单的情况来考虑和建模,在这种情况下,环境的作用是在系统的自由度中引入经典噪声。在这里,我们确定了经典噪声模型需要满足的必要条件,以定量地对变质进行定量建模。特别是,对于纯dephasing过程,我们确定了噪声确定的稳定统计属性,这些噪声由量子量算子的量子多点时间相关函数确定,而环境运算符将进入系统托架交互。尤其是,对于洛伦兹(Lorentz Drude)的光谱密度的示例性自旋玻色子问题,我们表明高温量子反应性被彩色高斯噪声数量地模仿。反过来,对于耗散环境,我们表明,经典噪声模型无法描述由于光子/声子的自发发射而放松引起的破坏效应。这些发展提供了一个严格的平台,以评估经典的破坏性噪声模型的有效性。
无监督异常检测 (UAD) 技术旨在不依赖注释来识别和定位异常,而只利用在已知没有异常的数据集上训练的模型。扩散模型学习修改输入 x 以增加其属于所需分布的概率,即,它们对得分函数 ∇ x log p ( x ) 进行建模。这样的得分函数可能与 UAD 相关,因为 ∇ x log p ( x ) 本身就是逐像素异常得分。然而,扩散模型被训练来反转基于高斯噪声的腐败过程,并且学习到的得分函数不太可能推广到医学异常。这项工作解决了如何学习与 UAD 相关的得分函数的问题,并提出了 DISYRE:受扩散启发的合成恢复。我们保留了类似扩散的管道,但用渐进的合成异常损坏代替了高斯噪声损坏,因此学习到的评分函数可以推广到医学上自然发生的异常。我们在三个常见的 Brain MRI UAD 基准上评估了 DISYRE,发现它在三个任务中的两个中都大大优于其他方法。
已知有条件的扩散模型对数据分布具有良好的覆盖范围,但它们仍然面临输出多样性的限制,尤其是在使用无分类器的无分类引导量表进行采样以实现最佳图像质量或在小型数据集中进行培训时。我们将这个问题归因于调节信号在推理中的作用,并为扩散模型提供了改进的采样策略,这些模型可以增加产生多样性,尤其是在高导度量表下,而采样质量的损失最小。我们的抽样策略通过在推断期间将高斯噪声添加到调节矢量中,以平衡多样性和条件比对,从而使调节信号降低了调节信号。我们的条件 - 退火扩散采样器(CADS)可以与任何验证的模型和采样算法一起使用,我们表明它可以提高各种条件生成任务中扩散模型的多样性。此外,使用现有的预处理扩散模型,CADS分别以256×256和512×512的形式获得了新的最先进的FID和2.31。