物理学-DSC 2A:电和磁(学分:理论-04、实践-02)理论:60 讲座矢量分析:矢量代数(标量和矢量积)回顾、梯度、散度、旋度及其意义、矢量积分、矢量场的线、表面和体积积分、高斯散度定理和斯托克斯矢量定理(仅陈述)。(12 讲座)静电学:静电场、电通量、高斯静电定理。高斯定理的应用-点电荷、无限长电荷线、均匀带电球壳和实心球、平面带电片、带电导体引起的电场。电势作为电场的线积分,由点电荷引起的电势,电偶极子,均匀带电球壳和实心球。根据电位计算电场。孤立球形导体的电容。平行板、球形和圆柱形电容器。静电场中单位体积的能量。介电介质、极化、位移矢量。电介质中的高斯定理。完全充满电介质的平行板电容器。(22 讲)磁性:静磁学:毕奥-萨伐尔定律及其应用-直导体、圆形线圈、载流螺线管。磁场的发散和旋度。磁矢势。安培环路定律。材料的磁性:磁强度、磁感应、磁导率、磁化率。简介
组:群体,正常亚组,商组,同构定理,Cayley定理的同态。广义的Cayley定理,Cauchy的定理,小组动作,Sylow定理及其应用。正常和亚正常序列,组成序列,可解决的组和尼尔植物组,Jordan-Holder定理及其应用。戒指:理想和同构,素数和最大理想,商领域和整体域,多项式和功率系列环。划分理论:欧几里得领域,主要理想领域,独特的分解域,高斯定理。Noetherian和Artinian戒指,希尔伯特基础定理,Chhen的定理。模块:具有身份,循环模块,自由模块,基本结构定理的左右模块,用于有限生成的模块,并应用于有限生成的阿贝尔组。参考:
1。电荷保护定律。库仑定律。电场强度。叠加原理。连续电荷分布的模型。均匀带电环和灯丝的电场强度。2。电场强度向量的通量。高斯定理用于静电场强度矢量。将高斯定理应用于点充电和平面。3。电场电位。点充电的电势。静电场载体与电势之间的关系。泊松方程。均匀带电的球体的潜力。4。电偶极子。点偶极子的场强和静电电势。外部电场中的电偶极子(力,扭矩,势能)。5。电容的概念。具有不同几何配置的电容器的示例。平行板电容器电容的推导。6。磁场B矢量。带有电流的生物萨瓦特 - 拉普拉斯定律的导体的磁场。具有直流电流的有限长度直导体的磁场。7。磁场矢量的循环定理。带有直流电的环中心的磁场。在长螺线管中的磁场表达。电感。8。电动力。DC电路中的功率。9。广义欧姆定律(差异和整体形式)。Joule-Lenz Law(差异和积分形式)。电磁场。麦克斯韦的方程式以整体和差异形式,其物理含义。不同单位系统中的基本电磁量和定律:SI,CGS和Gaussian。10。来自麦克斯韦方程的电磁平面波方程的推导。电磁平面波的横向性质,电场和磁场之间的关系,电场和磁场的相位振荡。11。平面谐波的极化状态。椭圆形,圆形和线性极化。偏振和自然光,MALUS定律,极化程度。12。光的衍射。 huygens-fresner原理:定义和数学表述。 菲涅耳螺旋,菲涅耳区板。 13。 通过圆形孔和圆形屏幕(菲涅耳区,菲涅耳螺旋)衍射14。 在不透明屏幕的直线边缘处的衍射。 cornu螺旋。 15。 fraunhofer衍射。 衍射模式的属性。 16。 光的干扰。 干扰形成,基本关系和干扰场的特征的条件。 干扰条纹的类型。 17。 电磁波的折射。 Snell定律的推导。 总内部反射。 18。 菲涅尔公式。 19。 20。光的衍射。huygens-fresner原理:定义和数学表述。菲涅耳螺旋,菲涅耳区板。13。通过圆形孔和圆形屏幕(菲涅耳区,菲涅耳螺旋)衍射14。在不透明屏幕的直线边缘处的衍射。cornu螺旋。15。fraunhofer衍射。衍射模式的属性。16。光的干扰。干扰形成,基本关系和干扰场的特征的条件。干扰条纹的类型。17。电磁波的折射。Snell定律的推导。总内部反射。18。菲涅尔公式。19。20。在反射和折射过程中电磁波极化。电磁表面波。使用菲雷斯公式的应用:布鲁斯特定律。在两个介质边界处电磁波的相位关系。光的分散。频率和空间分散。频率分散的电子理论。频率频率依赖性。在分散介质中电磁波包的传播。组速度。瑞利公式。21。培养基的非线性极化。 非线性光学现象(频率的谐波产生,加法和减法,自我关注,刺激散射)。 22。 电磁波在介电波导中传播的特征。 23。 光学平面波导。 介绍波导模式。 24。 光纤。 纤维结构。 光纤中的光传播。 25。 激光的分类(类型)。 各种类型激光器的特征。 激光辐射的主要特征及其评估方法。 26。 半导体中的吸收和光辐射的产生。 发光二极管。 最简单的半导体激光器的设计和操作。 27。 光子晶体。 使用光子晶体用于信息传输,存储和处理。 光子晶体中带结构的形成。培养基的非线性极化。非线性光学现象(频率的谐波产生,加法和减法,自我关注,刺激散射)。22。电磁波在介电波导中传播的特征。23。光学平面波导。介绍波导模式。24。光纤。纤维结构。光纤中的光传播。25。激光的分类(类型)。各种类型激光器的特征。激光辐射的主要特征及其评估方法。26。半导体中的吸收和光辐射的产生。发光二极管。最简单的半导体激光器的设计和操作。27。光子晶体。使用光子晶体用于信息传输,存储和处理。光子晶体中带结构的形成。
讲师:Meisong Tong 级别:中级 时间:2025 年 2 月 9 日下午 4:00 至下午 6:00 太平洋时间(美国和加拿大) 摘要 体积积分方程 (VIE) 对于通过积分方程方法解决非均匀或各向异性电磁 (EM) 问题是必不可少的。VIE 的解决在很大程度上依赖于体积积分域的适当离散化,对于任意形状的几何形状,通常首选四面体离散化。与离散表面域不同,体积域的离散化在实践中可能非常困难,即使对于简单而规则的几何形状,通常也需要特殊的商业软件。为了降低离散体积域的成本,特别是消除传统矩量法 (MoM) 要求的网格一致性约束,我们最近提出了一种新的无网格方法来解决 VIE。该方法基于通过格林高斯定理将体积积分转换为边界或表面积分,此时通过排除包围观测节点的小圆柱体或立方体来正则化积分核。对象所表示的原始积分域也被扩展为围绕对象的圆柱体或立方体域,以方便计算边界积分。小圆柱体或立方体上的奇异积分采用奇异减法技术进行特殊处理。为了说明该方法,给出了几个解决典型电磁问题的数值示例,并可以观察到良好的结果。简历 童梅松分别在中国武汉华中科技大学获得学士和硕士学位,在美国亚利桑那州坦佩亚利桑那州立大学获得博士学位,专业均为电气工程。他目前是德国慕尼黑工业大学高频工程系洪堡教授,同时也是上海同济大学电子科学与技术系主任、特聘教授和微电子学院副院长。他还曾担任美国伊利诺伊大学香槟分校客座教授和香港大学名誉教授。他在同行评审的期刊和会议论文集上发表了 700 多篇论文,并合作撰写了 8 本书或书籍章节。他的研究兴趣包括电磁场理论、天线理论与技术、射频/微波电路和器件的建模与仿真、互连和封装分析、用于成像的逆电磁散射以及计算电磁学。童教授是电磁学会院士、日本学术振兴会 (JSPS) 院士和 USNC/URSI 成员(B 委员会)。他自 2014 年起担任上海分会主席,并于 2018 年担任 SIGHT 委员会主席。他是IEEE天线与传播学会的博士后研究员,曾担任IEEE天线与传播杂志、IEEE天线与传播学报、IEEE组件、封装与制造技术学报、International Journal of Numerical Modeling: Electronic Networks, Devices and Fields、Progress in Electromagnetics Research、Journal of Electromagnetic Waves and Applications等数本国际著名期刊的副主编或客座编辑,并多次担任一些著名国际会议的分会组织者/主席、技术委员会委员/主席、大会主席等职务。2012年获日本京都大学客座教授称号,2013年获香港大学客座教授称号。他指导并指导了国内外多所著名学术期刊的编辑工作。