背景/讨论 Rodeo Hercules 消防区工作人员通过与财务咨询公司合作来准备该区的年度预算和审计。该公司为员工提供会计、对账、审计、预算编制和监督协助。过去几年,市政资源集团 (MRG) 担任财务顾问,Mike Oliver 先生担任项目经理,Getachew Demeku-Ousman 先生担任直接顾问。
脑震荡症状似乎时有时无或越来越严重。有时你甚至会怀疑自己是否有问题。症状似乎发生变化通常是因为你的身体或精神疲惫。如果你喝酒或服用药物(甚至是合法药物),症状也会发生变化。生病、心烦、疼痛或有压力也会导致变化。你越能控制这些其他事情,你的症状就会越好。症状是真实存在的。它们告诉你大脑仍在愈合,需要时间。花时间在家里、学校和工作中做出有益的改变,直到你不再需要它们。
摘要。在结直肠癌诊断中,常规结肠镜检查技术面临着临界局限性,包括有限的视野和缺乏深度信息,这可能会阻碍检测预癌病变。当前的方法很难为结肠表面提供全面和策划的3D重建,这可以帮助最大程度地减少缺失的区域并重新进行癌前息肉。解决这个问题,我们介绍了“高斯煎饼”,这种方法利用了3D高斯分裂(3D GS)与经常基于神经网络的同时定位和映射(RNNSLAM)系统相结合。通过将几何和深度正则化引入3D GS框架 - 我们的方法可确保高斯与结肠表面更准确地对齐,从而使3D重建更加顺畅,并对详细的纹理和结构进行了新颖的观看。在三个Di-verse数据集中进行的评估表明,高斯煎饼增强了新型视图的合成质量,超过了当前的领先方法,PSNR增长了18%,SSIM提高了16%。它还提供了超过100×的更快渲染和超过10倍的培训时间,使其成为实时应用程序的实践工具。因此,这有望实现临床翻译,以更好地检测和诊断结直肠癌。代码:https://github.com/smbonilla/gaussianpancakes。
量子力学是当今我们见证的重大技术发展的核心。世界各地正在做出巨大努力,以充分发挥这些新技术的潜力。这些努力主要集中在量子计算和通信协议的实现上,在高精度计量方面,我们期待着而且已经取得了很大进展。由于其对退相干具有很强的稳定性,光的量子态为实现这些量子技术提供了一个强大的候选平台。此外,该平台具有良好的可扩展性,因为它可以在室温下操作,并且与现有的通信技术兼容。量子光学系统与任何玻色子系统一样,可以用两种互补的方式描述 [1]。一方面是离散变量方法,主要关注光子数量作为相关可观测量。这种方法具有广泛的适用性,因为它为量子信息提供了一种自然的编码,每个光子编码一个量子比特的状态。然而,这种编码极易受到光路中光子丢失的影响,这是光学设备中最常见的问题来源,并且还存在难以确定性地生成单光子的问题。另一方面,还有连续变量方法,其中相关的可观测量是电磁场模式的实部和虚部,称为场正交。这种方法可以确定性地生成多达一百万种模式的巨大纠缠态[ 2 ],这为量子信息处理提供了独特的场所。连续变量框架允许在有限维相空间内描述无限维系统,该相空间是系统模式数量的两倍。这种描述是用准概率分布 [1] 来提供的,类似于统计集合的经典描述。在准概率分布家族中,值得注意的是维格纳函数。由于海森堡不确定性原理禁止同时测量振幅和相位正交,维格纳函数可以达到负值。尽管如此,它还是最接近经典的概率描述,因为它是状态的唯一相空间表示,它被归一化并边缘化为相应正交测量结果的概率密度。维格纳函数是区分高斯状态和非高斯状态的重要工具 [1]。根据定义,高斯状态是可以在相空间中用高斯维格纳函数描述的状态。这些状态可以用当前技术以确定性的方式生成和进一步操纵。特别是上面提到的大型多模纠缠态就属于这一家族。然而,最奇特的量子特征,如维格纳负性,是在非高斯态中发现的。我们正是需要这些奇特的特征,如维格纳函数中的负性[ 3 ]和非高斯纠缠[ 4 ]来实现无法用经典资源有效模拟的量子协议。在[ 4 ]中,我们证明了用经典设备模拟这种光学采样问题的复杂性在输入状态的非高斯性中呈指数增长,通过其恒星等级来衡量[ 5 ]。此外,我们提供了一种有效的算法来模拟可以通过移相器和分束器(被动线性光学)分离的状态的采样。换句话说,这个结果相当于说,为了得到一个难以用经典方法模拟的采样问题,状态应该在每个模式基础上表现出纠缠,因为否则
粒子群优化 (PSO) 是一种迭代搜索方法,它使用随机步长将一组候选解决方案围绕搜索空间移动到已知的最佳全局和局部解决方案。在实际应用中,PSO 通常可以加速优化,因为梯度不可用且函数评估成本高昂。然而,传统的 PSO 算法忽略了从单个粒子的观察中可以获得的目标函数的潜在知识。因此,我们借鉴了贝叶斯优化的概念,并引入了目标函数的随机代理模型。也就是说,我们根据目标函数的过去评估拟合高斯过程,预测其形状,然后根据它调整粒子运动。我们的计算实验表明,PSO 的基线实现(即 SPSO2011)表现优异。此外,与最先进的代理辅助进化算法相比,我们在几个流行的基准函数上实现了显着的性能改进。总体而言,我们发现我们的算法实现了探索性和利用行为的理想特性。
n terest已大大增加,因为它们为整合可进行调度生成,不可匹配的生成,储能系统和负载提供了弹性和可扩展的选择。最近,网络或互连的微电网也引起了人们的关注,并可能有助于解决现有网格基础设施的拥堵问题[1]。有效地协调和优化许多微电网的性能是不平凡的,需要进一步研究高级能源管理系统(EMS)算法。通常,与电源电子转换器内的电压,电流和其他控制环相比,EMS以较低的带宽工作。前者,也称为第三级控制,试图在更长的时间间隔内最佳地平衡供求。作为高级EMS算法的一部分,通常可以预测可再生的生成资源,负载需求以及使用不确定性的使用时间[2]。EMS可以单独或集体考虑经济,技术或环境限制,具体取决于特定微电网提供的负载和服务类型。
从任意观点以及适应不断变化的拓扑结构的表面重构。涉及人类或机器人相互作用与物体的场景需要动态适应分裂,合并或变形的表面。热热,下游应用,例如视觉效果和无标记运动捕获,从不依赖模板的情况下跟踪持久区域的能力显着。因此,方法必须有效地处理这些拓扑更改,以确保高质量的渲染和准确的重建,同时还要维护对现有表面的同意跟踪。经典方法主要依赖于网格和tex曲线图,这些图提供了合理的外观,但重大取决于网格分辨率。他们常常无法准确地确定细节和观察依赖性效果。al-尽管这些网格表示可以进行一定程度的跟踪,但它们努力处理重大的拓扑变化,需要新的关键帧以适应ma-jor变换。神经辐射场的出现(NERF)[28]在静态[1,46]和dy-namic场景[17,30]的外观和新型综合方面有了显着改善。使用Marting Cubes [37,44]可以从隐式签名的距离功能(SDF)得出表面,但除非使用了不足的模板,否则它们缺乏一致的跟踪。最近,出现了3D高斯脱落(3DGS)[20],具有明确的纹理代表,在外观上与NERF竞争,同时实现了更有效的效果。这些高斯人与网格面一起移动,以表示移动和变形的对象。其明确表示有助于跟踪,并为此开发了几种技术[26,50]。然而,准确的动态表面重建仍然是一个挑战,并且在现有表面的跟踪与引入新的表面保持平衡被证明很困难。为了应对这些挑战,我们提出了GSTAR,该方法能够重建光真逼真的外观和准确的表面几何形状,并随着拓扑变化而保持一致的跟踪。GSTAR利用多视图盖,并将网眼与绑定的高斯人结合在一起,与高斯表面相结合。当新的表面变得可见时,新的高斯人会产生,并且网格拓扑更新。适应性网格提供了时间一致,准确的几何形状,而高斯人则带来了逼真的外观。这个问题很困难,因为总会有一个折扣。可以通过固定的托架或模板[24,50]更轻松地跟踪的方法倾向于在新的姿势或变形下降低外观和几何形状的质量。相反,过度拟合静态场景的方法[8,14,16]缺乏时间一致性或错过新的框架详细信息。GSTAR通过尽可能多地跟踪面孔来解决这一权衡
(k)“有关排除黑社会团体的事项”的承诺书中有虚假记载或发生违反承诺的情况时。 (4)合同的准备 中标人被选定为中标人后,应立即准备合同。 (适用的合同条款为驻军标准合同《服务合同条款》中附加的“关于碰撞造假等违法行为的特别条款”和“关于排除有组织犯罪集团的特别条款”) (5)中标确定方法 总金额在单位确定的报价限额内的投标人为中标人。如果有两个或两个以上的最低出价者有资格中标,则将通过抽签来确定中标者。 在确定中标人时,中标金额为投标文件所载金额加上10%(如果该金额的小数部分不足1日元,则小数部分四舍五入)。因此,无论投标人是消费税的应税商业实体还是免税商业实体,投标人都必须在投标文件中载明相当于估算金额的110/100的金额。 (6)其他 A.双方当事人签字、盖章后,本合同即成立。 (一)投标人参加投标时须提交资格审查结果通知书复印件。 如果您代表其他人竞标,则必须提交授权委托书。 E. 允许通过邮寄方式投标。此时,应将信封折叠两层,内信封上写明“附有#11仓库消防泵控制面板维修服务投标表”,并另行附上资格审查结果通知书复印件,在投标当日上午10点前以挂号信或其他方式(有送达记录)寄至北千岁警备区第323会计组。此时请您致电负责人确认到达情况。 将立即进行重新招标。然而,如果已经通过邮寄方式投标,则重新投标将另行规定。 请在投标表格下方空白处写明:“本公司(若为本人或个人)或本团体(若为团体)接受《投标及合同指南》及《标准合同等》中的合同条款,参与投标。”此外,我们承诺遵守《招标及承包指南》中关于排除黑社会组织参与的条款。 “承诺并声明这一点。 如果您希望当天参加竞标,您必须在竞标日期前的星期五下午 5:00 之前联系北千岁驻地第 323 会计部队。 招标相关事宜咨询窗口:日本陆上自卫队北千岁警备队第 323 会计部队合同科(联系人:源田)电话:0123-23-2106(内线 5341) 规格相关事宜咨询窗口:日本陆上自卫队北千岁警备队作战部队管理科(联系人:押尾)电话:0123-23-2106(内线 5317) (7)公告发布地点及期限:发布地点:北方陆军网站:http://www.mod.go.jp/gsdf/nae/fin/index.html 发布期限:2024 年 6 月 13 日(星期四)至 2024 年 6 月 24 日(星期一)
土地利用政策:FAA在2023年结束了关于机场土地利用批准的最终政策,该政策将改变FAA审查和同意的方式,以对大多数机场财产的非侵权和“混合”使用。该策略设置了FAA如何以及是否批准赞助商的此类使用请求的过程和标准。值得注意的是,该政策有效地消除了在机场布局计划上将机场财产指定为非澳大利亚财产的先前做法,因为FAA的立场是,默认情况下,所有财产现在都是航空的,直到被批准用于另一种特定的,非特定的,非Aeraeronautical的使用。该政策赋予地方和区域FAA官员在执行批准过程和标准方面的实质性酌处权。尽管来自众多评论者的疑问,FAA专门没有解决该政策中描述的土地使用批准是否会受到联邦环境审查的约束。重要的是,今年1月8日生效的政策并非追溯。要进行进一步分析,请审查Kaplan Kirsch&Rockwell的机场法律有关该政策的警报。