摘要:越来越多的光学卫星任务对陆地地球系统的连续监测为植被和农田特征提供了宝贵的见解。卫星任务通常提供不同级别的数据,例如1级大气顶(TOA)辐射率和2级大气底(BOA)反射率产品。开发TOA辐射数据直接提供了绕过复杂大气校正步骤的优势,在该步骤中,错误可以在其中进行预测并损害随后的检索过程。因此,我们研究的目的是开发能够从成像光谱卫星任务中直接从TOA辐射数据中检索植被特征的模型。为了实现这一目标,我们基于辐射转移模型(RTM)模拟数据构建了混合模型,从而采用了植被范围RTM与大气libradtran RTM结合使用高斯工艺回归(GPR)。重点是植被冠层特征的重新评估,包括叶子面积指数(LAI),冠层叶绿素含量(CCC),冠层水含量(CWC),吸收的光合式活性辐射(FAPAR)的分数以及植被覆盖的分数(FVC)。使用即将到来的哥白尼高光成像任务(Chime)的带设置,评估了两种类型的混合GPR模型:(1)使用TOA辐射数据在1级(L1)培训的一种培训,并且(2)使用BOA反射率数据在2级(L2)训练。基于TOA和BOA的GPR模型均已针对原位数据验证,并具有从现场活动中获得的相应高光谱数据。基于TOA的混合GPR模型揭示了从中度到最佳结果的一系列性能,因此达到R 2 = 0.92(LAI),R 2 = 0.72(CCC)和0.68(CCC)和0.68(CWC),R 2 = 0.94(FAPAR)和R 2 = 0.95(FVC)。为了证明模型的适用性,随后将基于TOA和BOA的GPR模型应用于科学前体任务Prisma和Enmap的图像。所产生的性状图在基于TOA和BOA的模型之间显示出足够的一致性,相对误差在4%至16%之间(R 2在0.68和0.97之间)。总的来说,这些发现阐明了机器学习混合模型的开发和增强的路径,以估算直接在TOA水平下定制的植被特征。
摘要:肌电控制是利用肌肉的电信号来控制假肢或辅助机器人的过程。肌电控制中的模式识别是一个具有挑战性的领域,因为信号的底层分布在应用过程中可能会发生变化。协变量变化(包括手臂位置的变化或不同程度的肌肉激活)通常会导致控制信号的严重不稳定。这项工作试图通过使用稀疏高斯过程 (sGP) 近似变分自由能和引入基于无监督增量学习方法的新型自适应模型来增强肌电人机界面,以克服这些挑战。新型自适应模型整合了类间和类内距离,以提高具有挑战性条件下的预测稳定性。此外,它展示了增量更新的成功结合,这被证明可以显著提高在线用户研究中预测的性能和稳定性。
[1] Bui-Thanh,Tan等。“由PDE管辖的贝叶斯反问题的极端尺度UQ。”sc'12:高性能计算,网络,存储和分析国际会议论文集。IEEE,2012年。[2] Durrande,Nicolas,David Ginsbourger和Olivier Roustant。“用于高维高斯过程建模的添加剂协方差内核。”Annales de la cociences de Toulouse:Mathématiques。卷。21。编号3。2012。[3] Brown,D。W.等。在造成热处理期间,激光粉末床融合TI-6AL-4V的微观结构的演变。冶金和材料交易A 52(2021):5165-5181
高斯流程(GPS)[1]是机器学习中的一种多功能工具,但对它们的构成诸如阳性,单调性或物理约束之类的约束是具有挑战性的[2]。过去的作品已考虑将GPS作为差异方程的解决方案[3],时间和光谱重建问题[4],或通过线性操作员注入域特异性约束[5]。其他作品与非线性函数相结合的GP输出[6,7],通过约束边际可能性[8]或铸造线性约束作为截短的多变量高斯分布的条件期望,将输出结合到正值[9]。在这项工作中,我们旨在发现一个积极价值的天文光谱的潜在空间。在过去的降低谱图[10,11,12]的作品中,[13]独特地纳入了非阴性约束。,我们通过将其外部限制到正值来扩展高斯过程潜在变量模型(GPLVM)[14]。天文光谱的幅度不是本质的物理特性,不应在潜在空间中反映。我们引入了规模不变,并表明它会导致更好的重建。
神经数据集通常包含在重复刺激或行为的多个试验中测量神经活动的测量。对此类数据集的分析中的一个重要问题是表征神经活动的系统方面,这些方面携带有关重复刺激或感兴趣的行为的信息,这些刺激或行为可以视为“信号”,并将它们与在活动到试验中的频率分开,而这些活动的刺激时间却不是时间到刺激,而这些分析可以被视为“噪声”。高斯过程因子模型为识别高维神经数据中的共享结构提供了强大的工具。但是,它们尚未适应多试验数据集中信号和噪声的问题。在这里,我们通过提出“信号 - 噪声”泊松泊式高斯过程因子分析(SNP-GPFA)来解决这一缺点,这是一种可浮动的潜在可变模型,可在神经种群尖峰活动中解析信号和噪声潜在结构。为了了解模型的参数,我们引入了一个傅立叶黑框变分推理方法,该方法迅速识别平滑的潜在结构。最终的模型可靠地发现了大规模记录中的潜在信号和试验到试验噪声相关的闪光。我们使用此模型表明,在猴子V1中,噪声闪烁在子空间正交中对信号活动的扰动神经活动,这表明逐审噪声不会干扰信号表示。最后,我们扩展了模型以捕获多区域数据中大脑区域的统计依赖性。我们表明,在鼠标Visual Cortex中,在大脑区域之间具有共享噪声的模型超过具有独立每个区域噪声的模型。
图2。验证基于高斯过程的ML模型。(a)在得出的ΔKE和高斯过程之间的(a)在得出ΔKE和高斯过程的ΔKE和高斯过程之间,在得出的Δ和高斯过程之间预测了Δ(c)Δ(c)Δ(c)导出的Δ(c)范围差异的MD模拟V r和高斯过程之间的差异图预测了v r(d)概率密度函数eprots eratigre trots trots efictiationdutifeΔkekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekeke的概率的函数(e)的概率(e)的概率(e)差异的百分比(e)差异。 (f)在V r的预测中,百分比误差的概率密度函数图。 HEA的动能耗散(ΔKE)和穿透深度(δ),残留速度(V r)为(a)在得出ΔKE和高斯过程的ΔKE和高斯过程之间,在得出的Δ和高斯过程之间预测了Δ(c)Δ(c)Δ(c)导出的Δ(c)范围差异的MD模拟V r和高斯过程之间的差异图预测了v r(d)概率密度函数eprots eratigre trots trots efictiationdutifeΔkekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekekeke的概率的函数(e)的概率(e)的概率(e)差异的百分比(e)差异。 (f)在V r的预测中,百分比误差的概率密度函数图。HEA的动能耗散(ΔKE)和穿透深度(δ),残留速度(V r)为
摘要。本文介绍了 MH114 高升力翼型的多目标优化。我们寻求一组帕累托最优解,使翼型升力最大化,阻力最小化。由于几何不确定性,升力和阻力被认为是不确定的。概率气动力值的不确定性量化需要大量样本。然而,由于 Navier-Stokes 方程的数值解,气动力的预测成本很高。因此,采用多保真替代辅助方法将昂贵的 RANS 模拟与廉价的潜在流量计算相结合。基于多保真度替代方法使我们能够在不确定的情况下经济地优化机翼的气动设计。
· “使用高斯过程的分散式信息路径规划”,NSF FRR-NRI PI 会议,美国巴尔的摩,2024 年。[海报展示] · “最佳运动动力学运动规划和信息路径规划”,计算机科学与机器人研讨会,科罗拉多矿业学院,美国戈尔登,2024 年。[口头报告] · “使用高斯过程的分散式联邦学习”,IEEE 多机器人和多智能体系统国际研讨会 (MRS),美国波士顿,2023 年。[口头报告] · “高斯过程的自适应探索-利用主动学习”,IEEE/RSJ 智能机器人与系统国际会议 (IROS),美国底特律,2023 年。[口头和海报展示] · “使用高斯过程替代物的预期方差减少进行自适应采样的闭式主动学习”美国控制会议(ACC),美国圣地亚哥,2023 年。[口头报告]·“用于多机器人系统探索的分散高斯过程学习”马里兰机器人中心研究研讨会,美国学院公园,2023 年 5 月。[口头报告 - 特邀演讲]·“用于自适应采样的高斯过程替代品的可扩展探索-利用主动学习”马里兰机器人中心研究研讨会,美国学院公园,2023 年 5 月。[海报展示]·“使用分散高斯过程的多机器人自适应采样”,分布式自主机器人系统国际研讨会(DARS),法国蒙贝利亚尔,2022 年 11 月。[海报展示]
A G. Edenhofer等。“重新启动数值信息字段理论(Nifty.RE):高斯过程和变异推理的库”。in:(2024)。arxiv:2402.16683 [Astro-Ph.im]。