CEA,并在实验室中开发了包括Fifrelin在内的几种核裂变守则。代码依赖于四个免费参数,这些参数是为了重现平均中子和伽玛多重性的四个免费参数。这些输出均以各自的不确定性计算。在这项工作中,Fifrelin被视为黑匣子,我们从中没有任何先验知识。目的是找到合适的自由参数列表,以获取特定的输出数据。由于蒙特 - 卡洛方法,对目标不确定性(约9分钟)的计算时间相对较高,为0.01或0.03-取决于组件。因此,随机探索输入空间(4个维度)是很耗时的。在本文中,我们建议使用机器学习来克服此类问题。由于输入和输出数量少,并且我们对输出的不确定性所使用的机器学习方法的事实是高斯过程回归,也称为Kriging [1]。我们提出的方法结合了这种Kriging方法和目标中的优化算法,以找到与给定输出相对应的自由输入参数。以下第2节介绍了算法Fifrelin,该作品的目标是在第3节中确定的。第4节是关于高斯流程回归背后的数学和关于我们开发的算法的第5部分。最后,我们在6中显示了结果,并得出了结论。
摘要:涉及高斯过程 (GP) 的多保真度 (MF) 替代物用于设计激光定向能量沉积 (L-DED) 增材制造 (AM) 中的时间过程图。过程图用于建立熔池特性(例如熔池深度)与工艺参数(例如激光功率和扫描速度)之间的关系。MFGP 替代物涉及高保真度 (HF) 和低保真度 (LF) 模型。选择 Autodesk Netfabb ® 有限元模型 (FEM) 作为 HF 模型,而选择 Eagar-Tsai 开发的分析模型作为 LF 模型。结果表明,MFGP 替代物能够成功地融合不同保真度模型中存在的信息,以设计时间前向过程图(例如,给定一组真实深度未知的工艺参数,熔池深度是多少?)。为了扩展新开发的建立时间逆过程图的公式(例如,为了实现所需的熔池深度,但不知道真实工艺参数,那么作为时间函数的工艺参数的最佳预测是什么?),在计算预算约束下,通过将 MFGP 代理与贝叶斯优化 (BO) 相结合来进行案例研究。结果表明,与单精度 (SF) GP-BO 相比,MFGP-BO 可以显著提高优化解决方案的质量,同时降低计算预算。与仅限于开发稳态正向过程图的现有方法相比,当前的工作成功地展示了在 L-DED 中实现结合不确定性量化 (UQ) 的时间正向和逆过程图。
生物工程细胞,请加入我们的HRBRC总部2111室,进行有趣而非正式的研讨会!我们将准备在研讨会结束后准备去压缩。鼓励亲自出席。:)此会话也将实际上在Microsoft团队上托管。面对面的与会者可以享受披萨,小吃和饮料。摘要:类器官是微型器官,具有通过个性化医学,药物发现和疾病模型进行彻底改变现代医学的潜力。本演讲将探讨如何控制一组微型机器人,以操纵单个焦油,作为一个更大的生物工程项目的一部分,以在体外创建类器官。演讲的第一部分探讨了如何使用单个全局磁场来控制整个微型机器人团队,我们用它们来物理操纵生物工程细胞。第二部分涵盖了如何使用高斯过程回归来改善微型机器人模型,以更准确,更精确地控制系统。演讲将以未来的方向和下一步的讨论结束。发言人生物:洛根·比弗(Logan Beaver)是旧自治领大学机械和航空航天工程系的助理教授,他指导智能系统实验室。在此任命之前,他曾是波士顿大学系统工程系的博士后学者。他于2022年从特拉华大学获得博士学位,并获得了Marquette University和Milwaukee工程学院的MS和BS学位。他的研究着重于基于优化的多代理和群体系统的控制,以及对移动机器人和操纵器的最佳控制。
基于光学的深亚波长尺寸特征尺寸的精确测量一直受到制造工艺改进的挑战,包括更小的线宽、更密集的布局以及近原子尺度上更大的材料复杂性。电磁建模在很大程度上依赖于用于解决光学测量逆问题以进行参数估计的前向映射。机器学习 (ML) 方法一直受到关注,要么作为绕过与模拟直接比较的手段,要么作为增强非线性回归的方法。在这项工作中,使用特征明确的实验数据集及其假设二维几何的模拟库来研究 ML 方法。通过比较一种直接的库查找方法和两种 ML 方法(使用径向基函数 (RBF) 的数据驱动非线性回归替代模型和间接应用模拟强度数据的多输出高斯过程回归 (GPR)),说明了 ML 在光学临界尺寸 (OCD) 计量方面的优势和局限性。 RBF 和 GPR 通常比传统方法的准确度更高,而且训练点数最少只有 32 个。然而,随着测量噪声的降低,RBF 和 GPR 的不确定性差异很大,因为 GPR 的方差后验估计似乎高估了参数不确定性。在 OCD 中,必须同时解决准确度和不确定性问题,同时平衡模拟与 ML 计算要求。
神经科学中的一个常见问题是阐明行为上重要的变量(例如头部方向、空间位置、即将发生的动作或心理空间变换)的集体神经表征。通常,这些潜在变量是实验者无法直接访问的内部构造。在这里,我们提出了一种新的概率潜在变量模型,以无监督的方式同时识别潜在状态和每个神经元对其表征的贡献方式。与以前假设欧几里得潜在空间的模型相比,我们接受这样一个事实,即潜在状态通常属于对称流形,例如球面、环面或各种维度的旋转群。因此,我们提出了流形高斯过程潜在变量模型 (mGPLVM),其中神经响应来自 (i) 存在于特定流形上的共享潜在变量,以及 (ii) 一组非参数调整曲线,确定每个神经元如何对表征做出贡献。可以使用具有不同拓扑结构的模型的交叉验证比较来区分候选流形,而变分推理可以量化不确定性。我们在几个合成数据集以及果蝇椭圆体的钙记录和小鼠前背丘脑核的细胞外记录上证明了该方法的有效性。众所周知,这些电路都编码头部方向,而 mGPLVM 正确地恢复了代表单个角度变量的神经群体所期望的环形拓扑。
糖尿病在世界范围内变得越来越普遍。人们患有糖尿病或与这种疾病有关的风险。有必要防止由糖尿病引起的健康问题,降低糖尿病的风险并减少卫生系统上糖尿病的负荷。因此,尽早诊断和治疗糖尿病患者很重要。在这项研究中,使用PIMA印度糖尿病(PID)数据库来预测糖尿病。 将PID数据库分为培训数据集的2/3,测试数据集分为1/3。 然后,使用五倍的交叉验证将测试和培训数据集喂入机器学习模型中。 随机森林分类器,额外的树分类器和高斯过程分类器机器学习方法用于预测个人是否患有糖尿病。 在这项研究中,确定具有最高预测准确性的建议方法是随机森林分类器。 提出的方法的准确性为81.71%,精度为88.79%,召回率为84.83%,F-评分为86.76%,ROC AUC为88.03%。 提出的方法是为了帮助临床医生预测糖尿病患者的诊断。 使用COLAB笔记本使用Google云计算服务应用了本研究中开发的机器学习方法。 1。 引言胰岛素是一种调节人体血糖的激素。 糖尿病是一种慢性疾病,当胰腺无法产生必要的胰岛素或人体无法有效使用胰岛素时发生。 糖尿病不仅会影响生病的人。在这项研究中,使用PIMA印度糖尿病(PID)数据库来预测糖尿病。将PID数据库分为培训数据集的2/3,测试数据集分为1/3。然后,使用五倍的交叉验证将测试和培训数据集喂入机器学习模型中。随机森林分类器,额外的树分类器和高斯过程分类器机器学习方法用于预测个人是否患有糖尿病。在这项研究中,确定具有最高预测准确性的建议方法是随机森林分类器。提出的方法的准确性为81.71%,精度为88.79%,召回率为84.83%,F-评分为86.76%,ROC AUC为88.03%。提出的方法是为了帮助临床医生预测糖尿病患者的诊断。使用COLAB笔记本使用Google云计算服务应用了本研究中开发的机器学习方法。1。引言胰岛素是一种调节人体血糖的激素。糖尿病是一种慢性疾病,当胰腺无法产生必要的胰岛素或人体无法有效使用胰岛素时发生。糖尿病不仅会影响生病的人。随着时间的流逝,糖尿病会严重损害心血管系统,眼睛,肾脏和神经[1]。这也是一种影响病人和整个社会家庭的疾病。护理和治疗费用由于糖尿病及其引起的并发症而迅速增加,并承受了卫生系统的负担。此外,患者的生活质量降低了,这种情况对患者的家庭产生了负面影响。糖尿病已成为一个全球问题。大约有4.22亿人患有糖尿病。这些人中的大多数生活在低收入和中等收入国家。每年由于糖尿病而死亡[2]。使用机器学习方法预测患有糖尿病的人将使临床医生的工作更加容易。临床医生将确保在早期诊断和治疗糖尿病患者。
摘要 — 飞机的起飞重量 (TOW) 是飞机性能的一个重要方面,会影响从飞行轨迹到燃油消耗的大量特性。由于其依赖于乘客和货物载重因素以及运营策略等因素,特定航班的 TOW 通常不提供给运营航空公司以外的实体。上述观察结果促使开发准确的 TOW 估计值,可用于燃油消耗估计或轨迹预测。本文提出了一种基于高斯过程回归 (GPR) 的统计方法,使用从起飞地面滑行观测到的数据来确定 TOW 的平均估计值和相关的置信区间。选择预测变量时要同时考虑它们的易用性和底层飞机动力学。模型开发和验证是使用飞行数据记录器档案进行的,该档案还提供地面真实数据。发现所提出的模型的平均 TOW 误差为 3%,平均适用于八种不同类型的飞机,比飞机噪声和性能 (ANP) 数据库中的模型误差小近 50%。与仅提供 TOW 点估计的 ANP 数据库相比,GPR 模型通过提供概率分布来量化估计中的不确定性。最后,开发的模型用于估计飞机上升过程中的燃油流量。GPR 模型估计的 TOW 用作燃油流量估计的输入。与确定性 ANP 模型或不使用 TOW 作为明确输入的模型相比,所提出的 TOW 统计模型能够更好地量化燃油流量的不确定性。索引术语 — 统计建模;起飞重量 (TOW);燃油流量;飞行数据记录器 (FDR);起飞地面滑行
I. 引言人们对自动驾驶汽车 (AV) 的安全问题仍然存在,需要解决这一问题才能成功融入日常交通 [1]。除了真实的交通测试外,计算机模拟的交通环境还可用于加速验证阶段并引入各种各样的交通场景,这些场景可能需要几个小时的驾驶才能遇到 [2]–[4]。为了获得可靠的模拟结果,人类驾驶员模型应以合理的精度展示类似人类的驾驶行为。文献中提出了几种对人类驾驶员进行建模的方法。[5]–[7] 中的马尔可夫模型和 [8] 和 [9] 中的支持向量机用于预测驾驶员行为。[10]–[12] 中也将神经网络用于此目的。用于对驾驶员行为进行建模的其他工具包括动态贝叶斯网络 [13]、高斯过程 [14]、[15] 和逆强化学习 (RL) [16]、[17]。还提出了博弈论驾驶员模型。例如,在 [18] 中,Stackelberg 游戏用于对高速公路驾驶进行建模,但没有考虑由多个动作组成的动态场景。Stackelberg 游戏也用于 [19],它考虑了多动作场景。但是,一旦玩家数量增加到 2 以上,计算就会变得非常复杂。[20] 提出了一种博弈论逆 RL 方法,用于预测两个驾驶员之间的相互作用,同时假设周围车辆的预定义策略。这种方法对于
摘要:我们提出了一种非侵入性识别心脏异位激活的方法。异位活动会触发致命的心律不齐。因此,异位灶或最早激活位点(EAS)的定位是心脏病专家决定最佳治疗方面的关键信息。在这项工作中,我们通过最大程度地减少心脏模型预测的ECG之间的不匹配(在给定的EAS上的节奏),而在异位活动期间观察到的ECG来最大程度地降低心脏模型预测的ECG之间的不匹配,从而提出识别问题作为全局优化问题。我们的心脏模型在求解躯干中的心脏激活和正向bidomain模型的各向异性核心方程方面的量具有用于计算ECG的铅方法方法。我们在心脏表面上构建了损失函数的高斯过程替代模型,以执行贝叶斯优化。在此过程中,我们迭代评估较低的置信结合标准后的损失函数,该标准结合了探索表面与最小区域的开发。我们还扩展了此框架以结合模型的多个级别。我们表明我们的过程仅在11后收敛到最低。7±10。4迭代(20个独立运行),用于单项实现案例和3个。5±1。7迭代次数。我们设想可以在临床环境中实时应用此工具,以识别潜在危险的EAS。
在对电动驱动器的最佳控制中,人们可以通过在退缩地平线上求解基础控制问题,在离散时间步骤中隐式优化控制输入,或者可以尝试明确地找到一个直接映射测得的测量状态以控制操作的控制策略函数。后一种方法通常称为显式最佳控制,需要使用近似功能来解决连续(即无限)状态和动作空间。一旦找到了(近似)最佳控制策略,通常比在每个控制器周期必须在线优化过程进行在线优化过程的隐式情况要快得多。由于控制器决策时间间隔在电动驱动器的子毫秒范围内,因此明确的最佳控制的快速在线推断是一项令人信服的功能。在这里,潜在的控制策略近似函数涵盖了广泛的函数类别,例如神经网络,高斯过程或拉瓜多项式[1]。可以从数据(例如增强学习[2])或基于可用植物模型(差异预测性控制[3])中学习控制策略。在这两种情况下,近似函数的拓扑都在控制策略的性能以及训练和推理阶段的数值复杂性方面都起着至关重要的规则。虽然近似函数的特定选择通常是基于临时启发式方法,但如何系统地选择给定控制任务的最佳近似函数的问题仍然在很大程度上开放。