481 3 ....................................................................................................................................................... Brief Job Description 3 ...................................................................................................................... Applicable National Occupational Standards (NOS) 3 .............................................................................Acronyms 89 ........................................................................................................................................... Glossary 90 .............................................................................................................................................
修改目标 DNA 的基因组编辑工具是基因和细胞治疗的有力工具。目前主要的基因组编辑工具是CRISPR-Cas,应用最为广泛;其次是TALEN;最后是ZFN,应用最少。其中CRISPR-Cas和TALEN的基本专利将持续到2030年甚至更晚,因此在医疗领域使用需要高额的授权费用。另一方面,ZFN的基本专利已于2020年到期,它是一种可免许可使用的基因组编辑工具。通过将识别DNA的Zinc Finger与切割DNA的FirmCutND1 Nuclease(由广岛大学自主开发)相结合,可以制作出名为“Zinc Finger-ND1”的纯国产基因组编辑工具。然而,构建功能性ZFN并提高其基因组编辑效率极具挑战性。 [研究成果总结] 传统上,创建ZFN的主流方法是从随机重排的ZF中筛选与目标DNA结合的ZF。然而,创建功能性 ZFN 大约需要两个月的时间,这需要大量的时间和精力。另外,人们设计了一种称为“模块化组装”的方法,用于将 ZF 在基因上连接起来,但在制作三指 ZFN(三个 ZF 连接在一起)时,获得功能性 ZFN 的概率约为 5%,由于生产效率低,该方法无法使用。我们假设,手指数量少导致可识别的碱基数量减少,从而导致产生功能性 ZFN 的效率降低。因此,在本研究中,我们采用模块化组装的方式构建了一个6指ZF-ND1(图1),以增加其识别的碱基数量。结果,我们构建的10个ZF-ND1中,有两个被证实具有基因组DNA切割活性,这意味着我们以20%的概率成功获得了功能性ZFN。为了进一步完善ZF-ND1的功能,我们使用结构建模技术(AlphaFold、Rossetta和Coot的分子建模)来模拟ZF和DNA之间的相互作用(图2)。通过与 Zif268(一种与 DNA 结合的天然 3 指 ZF)的 DNA 相互作用模型进行比较,确定了五种候选突变。此外,通过比较与 Zif268 的 DNA 糖磷酸骨架结合的氨基酸,确定了四个突变候选者。当将这九个候选突变逐一引入功能性 ZF-ND1 时,发现其中三个突变(图 3)可提高基因组 DNA 切割活性。 V109K突变使裂解活性提高了5%,并且我们成功在结构建模的基础上增强了ZF-ND1的功能。
该项目部分资金由联邦公路管理局研究与发展办公室提供。作者对此表示感谢。作者还要感谢联邦公路管理局的 James Cooper
可控的方式。[6] 然而,自上而下的技术不可扩展,且大多数技术耗时耗力,从而阻碍了它们的潜在应用。特别是手性微结构可以通过调制飞秒激光焦点的单次曝光快速制造。[7] 其几何形状严格由可实现的结构化焦点决定,并且得到的表面质量相当差。相反,自下而上的方法提供了一种经济高效且可扩展的替代方法,通过由不同材料(如共聚物、[8] 肽、[9] 纳米粒子 [10] 和 DNA 四面体 [11] 制成的亚基的顺序自组装来创建分层纳米结构。不幸的是,由于自发自组装过程的固有特点,对几何形状、空间排列、规律性和螺旋性的精确控制非常困难。自上而下和自下而上相结合的混合制造技术的最新进展有望克服上述一些限制。[12] 特别是,通过介导弹性毛细管相互作用的毛细管力驱动自组装引起了人们的极大兴趣,因为它具有简单性和可扩展性的独特优势,[13] 并且在一定程度上已用于混合制造策略。基于光刻的技术已经实现中尺度刷毛的制造,并且通过利用弹性毛细管聚结已经得到高度有序的螺旋簇。[14] 然而,由于圆形原纤维具有旋转对称性,因此单个簇所实现的手性是随机的。虽然可以通过将横截面渲染为矩形来获得特定的手性重排,但手性的可调性仍然有限。利用电子束光刻技术实现10纳米级的纳米柱,然后通过毛细管力诱导的纳米内聚力进行自组装。[15] 利用多光束干涉光刻技术,结合溶液蒸发过程中的毛细管力,制备并组装大面积图案化微柱。[16] 我们之前的研究表明,可以利用毛细管力来驱动直柱生成具有高度可控性的分级微结构。[17] 然而,由于毛细管力在微尺度上很难利用,它们都无法实现可控的手性结构。因此,开发一种简便、可控、高效的功能手性结构制备方法是十分有必要的。
严格回顾了各种吸附剂在批量吸附和柱吸附中去除重金属的性能。介绍了吸附的基本思想,包括化学吸附和物理吸附及其组分、吸附剂和吸附质。研究了使用各种吸附质,即重金属(Cr、Cd、Pb、Ni 和 Cu)的吸附研究。深入讨论了一系列用于去除重金属的批量吸附和柱吸附的各种设计实验。参考了批量吸附和柱吸附研究的区别。本文深入解释了批量吸附和柱吸附中不同参数的澄清。完整介绍了柱吸附的各种参数,即入口离子浓度、流速、床高,以及批量吸附的各种参数,即接触时间、pH、温度和吸附剂剂量。很好地描述了两种吸附的等温线模型和动力学模型。此外,还完整观察到了设计柱吸附的突破曲线。最后,揭示了两种吸附在现实世界中的适应性困难。关键词:柱吸附;批量吸附;吸附剂;版权所有 © 2020 PENERBIT AKADEMIA BARU - 保留所有权利
考虑到动力协调控制系统的耐久性能最为重要,需要进行充分的分析和评估,并设定有余量的性能目标值。此外,关于设定燃油效率的目标,除了目前用于评估的一般驾驶模式之外,还希望创建和评估适合车辆实际方面的驾驶模式。
Akihiro Terasawa,Daisuke Suzuki,Yoshihito Hagihara,Akira Yoneyama,Chiaki Sakamoto,
单管提取方案范围从4到18分钟,高DNA回收率 - 萃取过程中DNA的最小损失无磁珠 - 无旋转柱 - 无旋转柱 - 无刺的化学物质方案可扩展从1个细胞到数百万个细胞,在标准的实验室热循环或机器人平台上轻松自动化的数百万个细胞,需要减少浪费
地震后禁止车辆通行。正在更换其柱子;工作包括支撑上层甲板、在柱顶处切割柱子并安装新的钢筋混凝土柱结构。正在更换一些柱脚,其他柱脚正在用新柱脚加固。将使用桩来承受高拉伸载荷和压缩载荷,以应对未来类似的载荷
