图表清单。图标题页 1. 所有危险等级 4 和 5 事件的帕累托分布(高涵道比涡扇飞机) 5 2. 所有危险等级 4 和 5 事件的帕累托分布(所有涡扇飞机 - 高涵道比和低涵道比) 6 3. 所有危险等级 4 和 5 事件的帕累托分布(涡桨飞机) 7 4. CAAM 研究期间的机队利用率 11 5. 非包容叶片 - 2001-2012 - 涡桨飞机和喷气/低涵道比 44 6. 非包容叶片的危险比 - 涡桨飞机和喷气/低涵道比 45 7. 非包容叶片 - 高涵道比总数和按代数 - 2001-2012 47 8. 非包容叶片的危险比 - 高涵道比总数和按代数 - 2001-2012 48 9. 非包容盘 - 2001-2012 – 涡轮螺旋桨发动机和喷气发动机/低旁通 50 10. 非包容盘式发动机的风险比 – 涡轮螺旋桨发动机和喷气发动机/低旁通 51 11. 非包容盘式发动机 – 高旁通 总计和按代数 – 2001-2012 53 12. 非包容盘式发动机 – 高旁通 总计和按代数 – 2001-2012 54 13. 非包容其他发动机 – 2001-2012 – 涡轮螺旋桨发动机和喷气发动机/低旁通 56 14. 非包容其他发动机 – 涡轮螺旋桨发动机和喷气发动机/低旁通 57 15. 非包容其他发动机 – 高旁通 总计和按代数 – 2001-2012 59 16. 非包容其他发动机 – 高旁通 总计和按代数 – 2001-2012 60
提高发动机和飞机效率 在过去三十年中,发动机效率提高了 50% 以上,与 20 世纪后期的推进技术相比,排放量减少了 50% 以上。仍有很大的空间来提高发动机效率,使航空业更加环保。这仍然是发动机 OEM 的关键近期目标之一,采用高涵道比风扇等技术来提高推进效率,使用 CMC(陶瓷基复合材料)来提高热效率。机身也是如此,重点是更高效的配置、更好的空气动力学和更轻的材料。
成为独立公司的承诺是,我们的未来将完全掌握在我们自己手中 — — 由我们来定义、由我们来创造。但我们也认识到,我们的腾飞得益于我们的历史。我们的工程师们制造了美国第一台喷气发动机、世界上第一台高涵道比涡扇发动机、第一台经美国联邦航空管理局 (FAA) 认证可用于民用直升机的涡轮发动机、最大、最强大的商用飞机发动机,以及最近制造的第一台三流自适应循环发动机。维护、大修和维修 (MRO) 团队改变了商业模式,不仅设计和制造高质量的发动机,还在整个生命周期内为这些发动机提供服务。我们站在前人的肩膀上。那些人一直在努力做到更好 — — 不是为了争第一,而是为了我们的客户,他们值得拥有最好的。这就是关键所在。
成为独立公司的承诺是,我们的未来将完全掌握在我们自己手中 — — 由我们来定义、由我们来创造。但我们也认识到,我们的腾飞得益于我们的历史。我们的工程师们制造了美国第一台喷气发动机、世界上第一台高涵道比涡扇发动机、第一台经美国联邦航空管理局 (FAA) 认证可用于民用直升机的涡轮发动机、最大、最强大的商用飞机发动机,以及最近制造的第一台三流自适应循环发动机。维护、大修和维修 (MRO) 团队改变了商业模式,不仅设计和制造高质量的发动机,还在整个生命周期内为这些发动机提供服务。我们站在前人的肩膀上。那些人一直在努力做到更好 — — 不是为了争第一,而是为了我们的客户,他们值得拥有最好的。这就是关键所在。
431. 多连接系统“发动机-附件-机身” V. Baklanov 和 S. Denisov 图波列夫设计局,图波列夫堤岸,17,莫斯科,俄罗斯 电子邮件:baklanov@tupolev.ru(2009 年 1 月 22 日收到;2009 年 3 月 10 日接受)摘要。本文报告了“发动机-附件-机身”多连接动态模型的研究,该模型根据发动机支撑(发动机安装点)分为独立的子系统。新一代飞机正在转向高涵道比的发动机,这需要改进新结构的动态特性。我们进行的研究使我们能够在转子频率范围内显著改进航空燃气涡轮发动机和机身的动态模型,并揭示动态特性的变化趋势,特别是随着涵道比的增加,发动机机身的动态特性。
上述参数的提高是通过 20 世纪 60 年代中期开发的高涵道比实现的,如今每架客机上都安装了这种技术。以 10:1 的涵道比 (BPR) 达到 115,000 磅 (514 kN) 的推力,质量流速高达 1,300 kg/s,足以让任何工程师印象深刻。当然,现在所谓的小型微型涡轮喷气发动机无法与这些数字相媲美,但这并不会使它们变得不那么令人印象深刻或复杂。虽然微型涡轮机的设计人员也必须实现效率和功率目标,但他们面临着在更小的规模上实现这些目标的额外挑战,这对材料和部件提出了更多问题。高效设计这种高性能发动机的最佳方法是使用虚拟原型,例如计算流体动力学 (CFD) 和结构分析。本文探讨如何使用 FloEFD 模拟微型涡轮机的流体流动、热条件和燃烧,以及这些模拟结果如何应用于结构分析模型。
新西兰型号认可申请由运营商新西兰航空有限公司于 2004 年 11 月 17 日提出。(制造商还收到了一封申请信,通过 FAA 运输飞机理事会转发。)该航空公司已订购首批八架 777-200ER 型飞机,制表号为 WC486 至 WC493,并已保留 ZK-OKA 至 ZK-OKH 标记。首架同类型飞机将是 MSN 29404,行号为 534,注册号为 ZK-OKA。波音 777 是一种低翼远程运输类客机,配备双高涵道比风扇喷气发动机,最大运行速度为 0.87M(330 KCAS)。新西兰航空的配置为 26 个商务舱座位(Contour“dreamsuite”可转换床)、18 个高级经济舱座位(39 英寸间距)和 269 个经济舱座位(32 英寸间距),共可搭载 313 名乘客。
上述参数的提高是通过高涵道比实现的,这种技术在 20 世纪 60 年代中期开发出来,如今每架客机上都可以看到这种技术。在涵道比 (BPR) 为 10:1 的情况下,推力高达 115,000 磅 (514 kN),质量流速高达 1,300 kg/s,这足以让任何工程师都印象深刻。当然,现在所谓的小型微型涡轮喷气发动机无法与这些数字相媲美,但这并不会使它们变得不那么令人印象深刻或复杂。虽然微型涡轮机的设计人员也必须实现效率和功率目标,但他们面临着在更小的规模上实现这些目标的额外挑战,这对材料和部件来说带来了更多问题。高效设计这种高性能发动机的最佳方法是使用虚拟原型,例如计算流体动力学 (CFD) 和结构分析。本文探讨了如何使用 FloEFD 模拟微型涡轮机的流体流动、热条件和燃烧,以及如何将这些模拟结果应用于结构分析模型。
RRJ-95(商品名苏霍伊超级喷气-100,SSJ-100)由苏霍伊民用飞机公司(SCAC)开发和生产,是现代双发喷气式区域级飞机系列。该系列首架飞机 RRJ-95B 于 2012 年首次获得欧洲航空安全局型号合格证(EASA TCDS No.EASA.IM.A.176)。2016 年 12 月,增加了最大起飞重量的后续型号 RRJ-95LR-100 获得批准。该飞机由两台高涵道比发动机 SaM146 提供动力(有两种型号,1s17 和 1s18),由 PowerJet (PwJ) 公司开发和生产。最初,发动机型号合格证由 EASA 于 2010 年颁发。2010 年,在 EASA 的监督下,对 RRJ-95B 进行了社区噪音认证飞行测试,2015 年,对 RRJ-95B-100 和 RRJ-95LR-100 型号进行了社区噪音认证飞行测试。在这些飞行测试活动中获得的认证噪音水平将在 EASA TCDSN 上公布。根据飞行测试结果,所有 RRJ-95 型号均符合 ICAO 附件 16 第 1 卷第 4 章噪音限制。
飞机用燃气涡轮发动机的设计和开发是一个高度集成的过程,需要整合来自多个设计专业的大量人员的努力。如果设计过程定义明确且产品架构稳定,则该过程的结果将变得高度可预测和可重复。如果由于技术插入、客户要求或组件配置的整体性能变化而导致架构发生重大变化,则这种大型集成设计过程可能会变得更具挑战性。必须向参与产品开发的所有人准确无误地传达所有组件、系统和子系统的设计意图、要求和预期性能。普惠公司是一家大型燃气涡轮发动机设计公司,自 1925 年成立以来一直从事发动机业务。2008 年,普惠公司设计、制造并试飞了一台大型“齿轮传动涡扇”发动机,这是正在开发的新产品架构的演示,新产品系列中的第一台是 PWl 524G。这种新型发动机结构与更传统的涡扇发动机结构不同,它在风扇和驱动它的涡轮轴之间使用了减速齿轮组。早期对燃气涡轮发动机产品设计过程相互作用的研究工作是使用传统的高涵道比燃气涡轮发动机结构进行的,使用