植物性抗病性是农业的基础,维护作物健康和生产力。然而,大多数植物性抗病性蛋白(包括NLR)(包括NLR(核苷酸结合,富含亮氨酸的重复))免疫受体会出现重大挑战,在28摄氏度以上的温度下显示出降低的有效性。这种温度敏感性具有关键的影响,使农作物更容易受到疾病和害虫的影响,尤其是在增加全球温度和气候变化的背景下。尽管其重要性,但这种温度敏感性的根本原因仍然很少理解。该项目旨在通过研究暴露于高温的植物中NLR免疫受体的作用方式来解决这一知识差距。
摘要:镍基高温合金具有优异的耐腐蚀和耐高温性能,在能源和航空航天工业中广受欢迎。镍合金的直接金属沉积 (DMD) 已达到技术成熟度,可用于多种应用,尤其是涡轮机械部件的修复。然而,DMD 工艺过程中的零件质量和缺陷形成问题仍然存在。激光重熔可以有效地预防和修复金属增材制造 (AM) 过程中的缺陷;然而,很少有研究关注这方面的数值建模和实验工艺参数优化。因此,本研究的目的是通过数值模拟和实验分析来研究确定重熔工艺参数的效果,以优化 DMD 零件修复的工业工艺链。热传导模型分析了 360 种不同的工艺条件,并将预测的熔体几何形状与流体流动模型和选定参考条件下的实验单轨观测值进行了比较。随后,将重熔工艺应用于演示修复案例。结果表明,模型可以很好地预测熔池形状,优化的重熔工艺提高了基体和 DMD 材料之间的结合质量。因此,DMD 部件制造和修复工艺可以从此处开发的重熔步骤中受益。
由 Taylor and Francis 出版。这是已获作者认可的手稿,其发行方式为:知识共享署名非商业许可证 (CC:BY:NC 4.0)。最终出版版本(记录版本)可在线获取,网址为 DOI:10.1080/07370652.2020.1762798。请参阅任何适用的出版商使用条款。
附录 A:极端高温数据摘要 42 图 1. 亚利桑那州按年份划分的高温相关死亡人数(2012-2022 年) 43 图 2. 亚利桑那州按县划分的高温相关死亡人数(2012-2022 年) 44 图 3. 亚利桑那州按月份划分的高温相关死亡人数(2012-2022 年) 44 图 4. 亚利桑那州按受伤地点划分的高温相关死亡人数(2012-2022 年) 45 图 5. 马里科帕县无家可归人口中高温相关死亡人数(2012-2022 年) 46 图 6. 亚利桑那州高温相关急诊就诊人数(2013-2023 年) 47 图 7. 亚利桑那州按人口普查区划分的 SVI(2020 年) 48 图 8. 亚利桑那州耐用医疗和辅助设备 (DME) 依赖情况(2023 年) 48
这项研究介绍了一种创新的多学科设计方法,用于高度导电和轻巧的针脚的散热器,利用石墨烯技术的优势。主要目的是优化电动汽车(EV)中基于硅碳化物(SIC)的逆变器的热管理。在模块上,在模块上进行了综合分析,包括扫描电子显微镜(SEM)和能量色散X射线光谱(EDS),在模块上进行了全面的分析。采用3D结合传热(CHT)方法的详细流体动力学模型用于评估与冷却液接触的SIC功率开关的热行为。多学科分析最初是在基于铝制的散热器上实施的,经过实验验证,随后与石墨烯进行了比较。与热链设计中的石墨烯的整合表现出显着的改进,包括在6 L/min min流体流量的情况下,传热系数(HTC)增加了24.4%,热电阻(接收到流体)降低了19.6%。因此,与铝制版本相比,基于石墨烯的散热器中的SIC芯片的温度升高11.5%。通过采用石墨烯而不是传统金属实现的SIC逆变器的冷却解决方案的改进,作为概念证明。这表示在性能和功率密度之间的关键平衡方面向前迈出了一步。
图S2显示了一个简化的MIC阶段的通用模型,用于n = 1.75的FSI插入。如主文本中指定的,可以看到在石墨烯层之间有或没有intercalant的画廊的交替。多个插入阶段的共存将导致使用公式1.如果占用石墨烯层之间的每个空间,则N等于1,并且X射线衍射图上的反射00n+1应该消失。这是对PF 6-阴离子的观察到的,但是,该过程的性质仍然可以讨论,并计划对此进行详细研究。我们介绍了两种情况的MIC期限。观察到的现象的另一个原因可能是主要文本中指定的两种机制的混合物:层间空间的顺序和随机统计填充。随着温度升高,可能会预期客人物种的随机分布,因为熵因子对系统的吉布斯自由能的贡献应相应增加。此外,还必须注意以下事实:根据其初始层间间距,由温度引起的互化机制的变化可能有所不同,这将代表一个有趣且广泛的方向探索。阴离子扩散
对于解决地热井中HPHT条件引起的钻井问题的可能性,需要进行热稳定的地热钻泥系统的发展。这是由于高温对HPHT条件下泥流体的降解影响而发生的。挑战在于设计一种可以承受高压,高温(HPHT)条件的合适钻孔液。本研究旨在提供既便宜又环保的新添加。在应用于HPHT钻井环境时,添加剂有可能匹配或超过现有添加剂的性能。几层石墨烯(FLRGO)是通过根据Hummer方法制备的氧化石墨烯获得的。然后,还用两种类型的纳米颗粒装饰了还原的石墨烯表面,以通过简单的溶液混合技术获取两种不同组合物的纳米复合材料。使用氮化硼(BN)纳米颗粒制备了第一个石墨烯纳米复合材料(RGB),其比率不同,以产生三组从1到3。使用氮化钛(TIN)纳米颗粒获得了第二个(RGBT),其百分比不同,以产生六组从1捐赠至6。The prepared reduced graphene oxide along with its nitrides nanocomposites were intensively investigated using several characterization techniques including scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transfer infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermal gravimetric analysis (TGA).因此,0.2、0.6和1 wt。在高温和压力下(230°C,17000 psi)到(80°C,2000 psi),研究对纳米复合材料均研究了如何影响水基钻孔液的流变学和过滤特性。%用作泥样样品的添加剂,并相对于参考泥浆进行了评估。的结果强调,在温度和压力升高时,带有60%石墨烯的RGBT样品,参考样品塑料粘度,20%硝酸硼和20%氮化钛的含量增强了10%至59%,17%至17%至61%至61%至61%和20%至67%(0.2 wt%),(0.2 wt%),浓度(0.6 wt),(0.6 wt tostive)和(0.6 wt t t t t t t t。同样,产量点分别提高了44%至88%,49%至88%和50%至89%。两种纳米复合材料在HPHT条件下均显着降低了滤液损失。这些发现表明,发达的纳米增强钻孔液可以抵抗高级钻孔操作中遇到的严重条件,并在较高温度下具有更好的热稳定性。
除了其实验含义外,这一发现还挑战了有关超导性如何工作的长期假设。团队表明,底物的侧向压缩可以稳定材料,即使它与通过从各个方向均匀挤压的均匀压缩差异,类似于钻石砧细胞产生的压缩。这一发现为原子间距在实现超导性中的作用提供了新的见解。
摘要:由于其特征,包括10-15 pc/n的D 33和高稳定性,直至1000℃以上的温度,因此,含有壁炉晶体的极性玻璃 - 螺旋孔被认为是在高温下需要压电的应用的高效材料。在本文中,我们研究了Sr-Fresnoite(STS)玻璃训练的钡取代。研究了两个方面:首先,取代对结晶的优先方向的影响,其次,玻璃 - 凝聚力在高温下产生和传播表面声波(SAW)的能力。XRD分析表明,BA的替换为10 at。替代,使我们能够保持壁画晶体(00L)平面的强烈优先取向,低于表面以下1 mm以上。较高的替代水平(25和50 at。%)诱导与表面机制竞争的非方向的体积结晶机制。锯设备是用0、10和25 at。%ba取代的玻璃室底物制造的。温度测试揭示了所有这些设备的频率和延迟的高稳定性。玻璃 - 驾驶次数为10%Ba取代的玻璃训练性给出了锯信号的最强振幅。这归因于高(00L)优先方向以及缺失的体积结晶。
用于燃料和化学商品生产的高温太阳能热化学过程已被研究了几十年,其可行性现已得到证实。然而,工业部署受到限制,主要原因之一是太阳能的易变性阻碍了先验的昼夜连续太阳能过程运行。尽管如此,太阳能间歇性现在在聚光太阳能 (CSP) 电力生产中得到了很好的管理。事实上,高达 600°C 的热存储已被证明,CSP 电力具有基载能力。然而,除了电力之外,供热是工业的主要需求。本文回顾了最近在高温太阳能热化学过程 (>600°C) 连续运行领域发表或获得专利的研究。目前,人们强烈致力于昼夜太阳能过程运行,因为它可以提高此类技术的耐用性、产品质量、效率和经济性。事实上,工业过程主要是连续的,每天的启动和关闭严重限制了太阳能驱动过程的生产能力,这是扩大规模的主要障碍。本文首次对昼夜连续高温太阳能过程进行了回顾和分类。报告的研究成果展示了该领域的巨大创新活动以及迄今为止研究的各种选择。主要成果表明,通过混合或热能储存,可以实现持续供热。