1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
将 NH 小节和其他核规范案例合并,并添加石墨堆芯部件的建造规则,形成新的第 III 节第 5 分部高温反应堆建造规则。
© 2018 Vertiv Co. 保留所有权利。Vertiv 和 Vertiv 徽标是 Vertiv Co. 的商标或注册商标。提及的所有其他名称和徽标均为其各自所有者的商品名、商标或注册商标。尽管已采取一切预防措施确保本文的准确性和完整性,但 Vertiv Co. 对因使用此信息或任何错误或遗漏而造成的损害不承担任何责任。规格如有变更,恕不另行通知。
在无铅合金中,SAC305 可能是最推荐用于高热可靠性要求的合金。然而,对于可靠性要求更严格的应用,如汽车和能源技术,合金选择有限。其中,Sn-Ag-Cu-Sb 基合金目前用于汽车领域,但由于锑具有潜在的危险性,其存在限制了其在多个市场的未来使用。本研究的目的是开发一种无铅和无锑合金,并添加合适的微量添加剂,使其具有比其他 SAC 合金更好的热机械性能。根据所研究合金的物理和机械性能,选择了两种合金进行进一步的焊膏评估。将选定的合金加工成 4 型粉末,并使用 ALPHA CVP390 焊膏助焊剂制成焊膏,并进一步评估其热可靠性。本文介绍了这些测试的结果。本文讨论了与 SAC305 相比获得的改进。新合金在 SMT 组装的冶金和焊接性能方面有显著增强。
高温下的有效隔热对合适的材料提出了严格的要求。低密度、多孔无机结构(孔径在亚微米范围内)对于控制热传导尤其有用。同时,必须抑制热辐射,这取决于成分的光学特性。在这里,作者展示了在高达 925°C 的温度下,颗粒二氧化硅材料从传导主导到辐射主导的热传输机制的转变的直接观察结果。提供了通过块状二氧化硅以及实心和空心二氧化硅颗粒的辐射传输的详细分析。高温下的光学透明度是驱动力,而表面波模式几乎没有贡献,特别是在绝缘颗粒堆积的情况下。现有的激光闪光分析框架得到扩展,以通过两个独立的扩散传输模型定性地描述辐射和传导热传输。该分析有助于更好地理解在高工作温度下制造和分析高效隔热材料所面临的挑战,因为需要控制多种传热机制。
德克萨斯大学奥斯汀分校微电子研究中心,美国德克萨斯州奥斯汀 78758 电话:(512) 471-1627,传真:(512) 471-5625,电子邮件:k-onishi@mail.utexas.edu 摘要 研究了合成气体 (FG) 退火对 HfO 2 MOSFET 性能的影响。结果表明,高温 (500-600°C) FG 退火可显著改善 N 和 PMOSFET 的载流子迁移率和亚阈值斜率。这种改善与界面态密度的降低有关。还在 HfO 2 沉积之前用 NH 3 或 NO 退火进行表面处理的样品上检查了 FG 退火的有效性。结果发现,FG 退火不会降低 PMOS 负偏置温度不稳定性特性。
摘要 — 开发了一种电子封装技术,该技术可在二氧化碳 (CO 2 ) 和氮气环境中承受模拟的金星表面温度 465°C 和 96 bar 压力,且不含腐蚀性微量气体。对氧化铝陶瓷基板和氧化铝上的金导体的电气和机械性能进行了评估。最有前途的芯片粘接材料是厚膜金和氧化铝基陶瓷浆料。使用这些芯片粘接材料将氧化铝、蓝宝石、硅和碳化硅芯片粘接到氧化铝基板上,并在 465°C 的 CO 2 环境中暴露于 96 bar 压力下 244 小时。陶瓷芯片粘接材料在测试前后表现出一致的剪切强度。还评估了氧化铝陶瓷封装材料的热机械稳定性。封装基板上的器件采用陶瓷封装,在 Venusian 模拟器测试后,裂纹和空隙没有明显增加。对金键合线进行了线拉力强度测试,以评估 Venusian 模拟器暴露之前和之后的机械耐久性。暴露前后的平均金键合线拉力强度分别为 5.78 gF 和 4 gF(1 mil 金键合线),符合最低 MIL-STD-885 2011.9 标准。Venus 模拟器测试后,整体键合线菊花链电阻变化为 0.47%,表明键合线完整性良好。制作了钛封装来容纳陶瓷封装基板,并制作了双层金属化馈通来为封装提供电气接口。
自 1985 年以来,一项技术计划一直在进行,旨在开发用于航天器的耐高温氧化推进器。这项技术的成功开发将为设计性能更高、羽流污染更少的卫星发动机奠定基础。或者,这项技术计划将提供一种具有高热裕度的材料,使其能够在常规温度下运行,并延长可加燃料或可重复使用的航天器的使用寿命。新的腔室材料由铼基体组成,表面涂有铱以防氧化。这种材料将推进器的工作温度提高到 2200°C,比目前使用的硅化物涂层铌腔室的 1400°C 有显著提高。用铱涂层铼制造的 22 N 级空间保持发动机的稳态比冲比铌腔室高 20 到 25 秒。预计 Ir-Re 远地点 440 N 级发动机将额外提供 10 到 15 秒。这些改进的性能是通过减少或消除燃烧室内的燃油膜冷却要求,同时以与传统发动机相同的总混合比运行而实现的。该项目试图将飞行资格要求纳入其中,以降低飞行资格项目的潜在风险和成本。
1) 拍瓦时 (PWh) 相当于 10 9 兆瓦时 (MWh) 2) https://ourworldindata.org/emissions-by-sector#energy-electricity-heat-and-transport-73-2
关键词:离子注入、SiC、封盖、碳、退火。摘要本研究报告了一项广泛的研究,研究了离子注入 SiC 材料高温退火过程中使用的封盖材料对表面粗糙度和质量、掺杂剂分布和扩散以及晶体缺陷的影响。本研究调查了化学气相沉积 (CVD)、物理气相沉积 (PVD) 和热解光刻胶 (PR) 碳封盖材料。CVD 碳层(也称为高级图案化膜 (APF®))是使用 Applied Producer® 沉积的。引言 在加工碳化硅 (SiC) 晶片以制造功率 MOSFET 和二极管 [1] 等微电子器件的过程中,离子注入后在衬底晶片顶部沉积一层保护层,以防止 Si 升华和台阶聚束形成以及其他表面缺陷的出现 [2, 3, 4],从而保持表面质量,这些缺陷发生在激活 SiC 中掺杂剂所需的高温退火步骤中 [5]。这项工作研究了在这种高温退火过程中使用的保护性覆盖材料对表面和块体材料质量的影响。实验细节 在高温 (500 ˚C) 下用铝离子注入样品,铝离子以 180 keV 和 2.5E15 离子/cm2 的剂量加速,以便在约 0.2 微米深度处实现约 2E20 离子/cm3 的峰值浓度。然后用不同的碳基材料覆盖样品,然后在 1800˚C 下退火 30 分钟。然后用 O2 灰分去除保护盖,随后进行清洁和擦洗,然后进行原子力显微镜 (AFM)、在 SICA 工具上实现的表面和体光致发光 (PL) 以及二次离子质谱 (SIMS)。结果我们报告了模拟和 SIMS 显示的铝注入后轮廓之间的出色一致性