高温电子技术发展迅速,广泛应用于发动机控制、能源勘探和工业过程控制。除了 150°C 以上硅基微电子设计和构造方面的挑战外,石英晶体振荡器还带来了一系列独特的设计复杂性。传统石英振荡器在 125°C 以上时表现出明显的频率与温度依赖性,而 CTE 不匹配引起的应力会产生额外的频率扰动。除了高温之外,许多此类应用还会使振荡器受到极端冲击和振动。Microchip 的设计和工艺工程师团队已经开发出专有解决方案来应对这些挑战,从原始石英的加工开始,到电子设计,再到整个组装所需的封装和互连技术。
高表面特性。tc ba-y-cu-o和通过薄绝缘子过层钝化。Takashi Hirao,Kentaro Setsune和Kiyotaka W asa。中央重新建筑实验室,Matsushita Electric Industrial Co.,Ltd.,3-15,Yagumonakamachi,Moriguchi,Osaka,Osaka 570
包括消防员、面包店工人、农民、建筑工人、矿工、锅炉房工人、工厂工人、公共工程员工、农场工人、废物管理工人、运输和仓库工人、公用事业工人、屋顶工等。室外温度升高也会使室内工人的工作条件恶化,包括使室内环境更难降温。• 在我们的社区,极端高温正在增加美国家庭的成本。极端高温不仅使许多美国人被送往急诊室和紧急护理诊所,还会扰乱粮食供应;破坏道路、桥梁、铁路和其他关键基础设施;并使美国家庭和企业的空调、电力和保险费用飙升。极端高温还导致停电和生产力损失,给我们的社区带来额外的成本和危害。• 在自然环境中,极端高温正在给我们的森林、海洋和其他生态系统带来压力。高温迫使物种迁徙,并造成前所未有的干旱和野火状况,尤其是在西部。在我们的海洋中,温度升高导致大量生物死亡、食物链断裂并损害敏感的珊瑚礁生态系统。• 当然,极端高温会影响我们的健康和福祉。极端高温可能导致中暑等健康紧急情况,并可能使心脏病和哮喘等慢性病恶化,包括降低室外空气质量。学校的高温影响我们的孩子,恶化学习环境,给学生运动员带来风险,取消课程,降低考试成绩。虽然气候变化继续导致气温升高,但每个社区和各级政府的领导人在保护我们的社区免受极端高温的危险影响方面都发挥着关键作用。联邦机构、美国国会、各州、部落、领地、地方政府、企业、宗教机构、非政府组织和其他组织必须共同努力,为我们的社区做好准备,保护它们免受极端高温的最严重影响。拜登-哈里斯政府一直努力应对气候危机、降低制冷成本、加强我们的基础设施,并投资于全美创新的制冷策略。联邦政府正在开发新的预测工具、调整我们的电网、改造和防寒保暖房屋、保护工人、创造缓解高温的绿色空间、建设社区能力等等。即便如此,全国各地的社区仍然面临风险——
基于Solrico(www.solrico.com)进行的市场调查的高温存储解决方案提供商的概述 - 地位,并由自然资源资助来源:公司的信息:公司信息
开发轻质结构金属以降低汽车总体能耗,进而减少废气排放,被认为是一项非常重要的突破。在这方面,镁 (Mg) 凭借其低密度和高比强度发挥着非常重要的作用 [1,2]。不幸的是,Mg 的广泛应用受到限制,因为其在室温下的延展性有限,这可以归因于六方密排 (hcp) 结构无法适应晶体 <c> 方向的塑性变形。基底和非基底滑移系统的临界分辨剪应力 (CRSS) 差异很大,导致在非基底滑移被激活之前就出现了裂纹 [3,4]。这促使研究人员开发基于原子流动机制的高性能镁合金设计策略,其中特定溶质的添加可导致第一本征堆垛层错能 (I 1 SFE) 降低 [5]、延迟金字塔到基底的转变 (PB 转变) [6] 或增强金字塔 II 位错的交叉滑移 [7]。此外,已经确定,通过改变微观结构和通过预/后热机械处理导致的再结晶行为削弱基底织构,可以提高镁合金的性能。Dong 等人 [8] 报道了削弱
超导量子信息处理机主要基于微波电路,该电路具有相对较低的特性阻抗(约 100 Ω)和非谐性小的特点,这会限制它们的相干性和逻辑门保真度 1、2。一种有前途的替代方案是基于所谓的超电感器的电路 3 – 6,其特性阻抗超过电阻量子 RQ = 6.4 k Ω。然而,以前实现的超电感器由介观约瑟夫森结阵列 7、8 组成,会在量子比特附近引入非预期的非线性或寄生谐振模式,从而降低其相干性。在这里,我们提出了一种基于颗粒铝超电感器条带的通量量子比特设计 9 – 11。我们表明,颗粒铝可以形成具有高动态电感的有效结阵列,并可与标准铝电路加工原位集成。测得的量子比特相干时间 T ** ss 30 2 ≤ μ 说明了颗粒铝在从受保护的量子比特设计到量子限制放大器和探测器等各种应用领域的潜力。使用超导电路 1 构建大规模量子信息处理机器仍然是一项具有挑战性的物理和工程工作。尽管目前已经有了有前途的小规模原型 12 – 14 和必要构建块的原理验证演示,但要扩展到大量逻辑量子比特,需要在量子比特技术的各个方面取得突破,包括量子比特架构和材料。例如,当前超导量子比特处理器面临的主要挑战之一是量子态泄漏到非计算自由度 2 的问题,这可能成为扩展的障碍。 transmon 量子比特的有限非谐性可能不足以在频率上将计算空间与周围日益复杂的微波环境隔离。一种有前途的替代量子比特架构基于所谓的超电感器,其特性阻抗大于 RQ = h /(2 e ) 2 = 6.4 k Ω,例如 fluxonium 量子比特 3 ,它提供数量级更大非谐性和与 transmon 量子比特 4 相当的相干性。在这些电路中,相位的量子涨落比电荷涨落更占主导地位,并为设计新的、可能受到保护的量子电路 15、16 提供了场所。大电感器也可能成为下一代通量和相位量子比特 17 的基石。此外,采用超电感器和小电容器的微波谐振器最近已被用来增强和限制电压波动,从而实现光子和电子之间的强耦合
摘要:尽管豇豆能够在高温环境下茁壮成长,但其产量会受到高温胁迫的阻碍,尤其是在夜间气温超过 17 ◦ C 时。该作物的种质库可能具有显著的遗传变异性,可以利用这些遗传变异性培育耐热品种。在改良作物耐热性方面取得的进展有限,尤其是在撒哈拉以南非洲典型的炎热短日环境下。目前仅培育出少数耐热品种,部分原因是人们对耐热机制和环境相互作用对基因型的影响了解有限,以及表型不精确。本综述重点介绍了耐热豇豆基因型培育方面的主要成就、挑战和未来方向,并提供了近期文献中的更多信息,为豇豆耐热性相关性状的文献做出了贡献。我们认为,在开发适应目标生产环境的品种时,尚未充分利用豇豆耐热相关性状的遗传变异性。因此,应注意评估作物的遗传库,针对提高耐热性的适应性、形态和生理性状。我们建议育种计划将全株生理性状的表型分析和分子育种结合起来,以确定育种者友好的常规选择标记。随后,应利用现代遗传和基因组资源(如创新遗传资源、基因组选择、快速育种和基因组编辑技术)将耐热有利等位基因引入适应性易感品种。这些工具在快速开发改良耐热品种和结合豇豆农民和消费者所偏爱的必备特性方面具有巨大前景。鉴于气候变化可能导致大气温度升高,迫切需要开发耐热豇豆品种,以确保当前和未来种植和农业食品系统的可持续性。
Tim A. Coombs 1†,Qi Wang 1,A。Shah 1,J.Hu 1,L。Hao 1,I。Patel 1,H。Wei 1,Y。Wu 1,Thomas Coombs 1,4
酷热和气温升高 酷热的影响因暴露时间、个人特征和个人情况而异。例如,一个人暴露在高温下的时间长短、摄入的水量以及是否使用过任何物质。随着气温逐年升高,纽约人患上与高温有关的疾病的风险只需上升 5°F 就可增加一倍。高温和频繁的热浪对吸毒者构成重大健康风险。这是因为不同的药物会对人体产生生理影响,尤其是在高温下服用时。2