总主席:F. Patrick McCluskey,马里兰大学技术委员会:Brianna Klein,桑迪亚国家实验室 | Emad Andarawis,通用电气全球研究中心 | David Shaddock,通用电气全球研究中心 | Liangyu Chen,俄亥俄航空航天研究所/美国国家航空航天局 | Katherine Burzynski,美国空军研究实验室 | Brendan Hanrahan,美国陆军研究实验室 | Andrew Wright,桑迪亚国家实验室概述:HiTEC 2025 延续了提供领先两年一度会议的传统,致力于推动和传播高温电子行业的知识。在国际微电子组装和封装协会的组织赞助下,HiTEC 2025 将成为展示领先高温电子研究成果和应用要求的论坛。这也将是与来自世界各地致力于推动高温电子技术的同事建立联系的机会。要求的摘要包括以下主题:• 应用:
502-800澳门玻璃陶瓷:建议用于1472ºF(800ºC)的温度,高达1832ºF(1000ºC)。表现出低导热性,高强度,高电绝缘,零孔隙率,无润湿和热膨胀系数,类似于大多数金属和密封玻璃。机器的紧密公差高达0.0005英寸,表面光洁度小于20µin,并抛光达到0.5µin。用于超高真空,航空航天,核,焊接,固定和医疗应用。容易加工,不需要射击。条,圆盘,杆和板的直径为1⁄16英寸,直径为12英寸。
[15] Watanabe Tomonori等人:低温工程39,553(2004)。[16] Iimi Akira等人:低温工程42,42(2007)。[17] A.P.Malozemoff和Y. Yamada:超导100年,第11章“第二代HTS Wire”,P689(CRC出版社,2011年)。和Izumi Teruro,Yanagi Nagato:血浆和核融合杂志93,222(2017)。大量的制造方法,包括兔子底物,mod(化学溶液方法)和真空蒸发方法。 [18] http:// www。istec。或。JP/Tape-Wire/Labo-Tape-Wire。html,使用PLD方法和MOD方法(化学溶液方法)的金属棒的高性质。[19] T. Haugan等。,自然430,867(2004)。[20] Y. Yamada等。,应用。物理。Lett。 87,132502(2005)。 [21] H. Tobita等。 ,超级条件。 SCI。 技术。 25,062002(2012)。 [22] Matsumoto Kaname:应用物理77,19(2008)。 [23] Yamada Shigeru:应用物理93,206(2024)。 [24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。 [25] Miyata Noboru:材料37,361(1988)。 [26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。 ,科学。 Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。Lett。87,132502(2005)。[21] H. Tobita等。,超级条件。SCI。 技术。 25,062002(2012)。 [22] Matsumoto Kaname:应用物理77,19(2008)。 [23] Yamada Shigeru:应用物理93,206(2024)。 [24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。 [25] Miyata Noboru:材料37,361(1988)。 [26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。 ,科学。 Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。SCI。技术。25,062002(2012)。[22] Matsumoto Kaname:应用物理77,19(2008)。[23] Yamada Shigeru:应用物理93,206(2024)。[24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。[25] Miyata Noboru:材料37,361(1988)。[26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。,科学。Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。Rep。11,8176(2021)。[28] R. Hiwatari等。,血浆融合res。14,1305047(2019)。[29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。[30] D. uglietti,超越。SCI。 技术。 32,053001(2019)。SCI。技术。32,053001(2019)。
图 2. 在室温下收集了“原始”h-BN/Cu 箔的 Cu 2p (a)、O 1s (b)、N 1s (c) 和 B 1s (d) 的 XPS 图像,随后在 13 Pa 氢气分压下进行 APXPS 图像(绿色),最后在 13 Pa 氢气分压下进行等离子体暴露(蓝色)。典型的 SEM 图像是在等离子体暴露前(e)和暴露后(f)收集的 h-BN/Cu 叠层,分别使用 2 nA 和 1.5 nA 束流,使用相同的能量(3kV)和检测器设置。
美国国家标准与技术研究所正在研究一种原型低温热传递标准 (CTTS),作为低信号电平下的潜在交流-直流传递标准 [1, 2]。最近,我们用 HTS 传输线改造了低温标准,以提高其性能。电子低温设备的一个常见问题是将直流和交流信号从室温参考平面传送到低温设备。这对于 errs 来说尤其令人担忧,因为校准的仪器必须处于室温下。由于大多数金属和合金的电导率和热导率成正比,因此在试图实现低电阻和低热导率时会出现困境。对于超导体,由于消除了电子对该值的贡献,临界温度 (Tc) 以下的热导率可能会急剧下降。就超导状态下的电性能而言,直流电阻降至零,载流能力高,交流传输特性在感兴趣的频率范围内足够。我们实施了由高质量结晶薄膜 YBa2Cu)Ox (YBCO) 制成的共面传输线。YBCO 的临界温度接近 90 K,因此在 77 K 时它已进入超导状态。我们使用此线在低温恒温器的 77 K 和 4 K 级之间传输电信号。
近年来,新能源的广泛使用使得电力设备必须在高电压、大功率、高温等恶劣环境下工作[1,2]。因此,电介质材料作为电力设备必不可少的组成部分,受到了更多的关注。电力设备中使用的固体电介质可分为聚合物电介质和无机电介质。无机电介质具有较高的温度稳定性,但也存在击穿强度(E b )低、柔韧性差的缺点,给大规模制备带来了不可忽视的困难。与无机电介质不同,聚合物电介质具有重量轻、柔韧性好、易于加工等优点[3]。同时,优异的介电性能(高E b 、低介电损耗[tanδ])使其在电力设备中得到广泛的应用。随着电子和电力系统的不断小型化和功率输出的增加,许多领域都要求聚合物电介质在恶劣环境下可靠工作。例如,火箭和航天飞机壳体附近的控制和传感电子设备需要高温电介质材料在250 ∘ C 以上工作。在地下油气勘探中,工作温度超过 200 ∘ C [4]。不幸的是,传统聚合物电介质热稳定性差,严重威胁电力设备的可靠运行,并显著缩短其生命周期。因此,在高温应用中使用二次冷却设备来降低工作温度。然而,考虑到地下勘探和空间站等大型设施所经历的极端温度,二次冷却很难实现。因此,一个更具吸引力的策略是开发能够在高温下长期工作的耐高温聚合物电介质。这种策略可以提高系统可靠性,降低成本,并消除对大型冷却系统的需求以及远程放置电子设备所需的接线和互连 [5,6]。
简介 传统上,高温电子产品的主要市场是井下石油和天然气行业。然而,航空电子、汽车和许多其他行业的应用也具有相同的关键要求:在恶劣的操作条件下(包括高湿度和多尘)的可靠性,以及承受冲击和振动的能力。 电阻器和电容器在任何电子设备和系统中无处不在。缺乏可靠的高温、高值电容器几乎肯定会限制这些新应用的增长。目前市场上大多数电容器技术,例如铝电解电容器或薄膜电容器,最高温度范围限制在 125ºC - 150ºC 甚至更低。为了获得更高的温度额定值,使用陶瓷和钽电容器。 高温应用 井下 在井下电子设备中,高温通常被归类为 150ºC 及以上。过去,150ºC 至 175ºC 的温度是钻井作业的典型最高额定值。更深的钻井和勘探不利位置的需求大大增加了这种情况,如今的井温可能超过 200ºC,压力超过 25kpsi [1]。1. MWD - 随钻测量 (Sperry) – MWD 工具直接安装在钻头 (钻头) 的背面。典型的深井温度为 210ºC 及以上,在非常深的天然气井中,潜在温度可能升至 25