• 3D 打印或增材制造 (AM) 在实现航空航天应用的新设计空间方面已显示出良好的前景。 • 每种 AM 技术都有一系列优点和缺点。 • 与其使用 AM 生产众所周知的铸造和锻造合金,不如将 AM 视为生产目前难以制造的材料的新机会。 • 在本研究中,使用 L-PBF 是因为其尺寸精度较高。
摘要:Inconel 718 是一种镍基高温合金,由于其高强度和耐腐蚀性能,是航空航天、石油和天然气工业的绝佳选择。IN718 的加工非常具有挑战性;因此,应用增材制造 (AM) 技术是克服这些困难和制造传统技术无法制造的复杂几何形状的有效方法。选择性激光熔化 (SLM) 是一种激光粉末床熔合方法,可用于高精度制造 IN718 样品。然而,工艺参数对制造样品的性能有很大影响。在本研究中,开发了一个预测模型,以获得 IN718 合金 SLM 工艺中的最佳工艺参数,包括激光功率、图案间距和扫描速度。为此,采用具有各种算法的人工神经网络 (ANN) 建模来估计工艺输出,即样品高度和表面硬度。建模结果与实验输出完全吻合,从而证明了 ANN 建模对于预测最佳工艺参数的优势。
' i • 铸造和锻造 i ' ' i • 粉末冶金 (PM) i ' ' ! £ 双微结构 ! '--------------------------------- ' ~ asploy 600----- : ----- : --- : ---~ : ----- : --- : ---~ 1950 1960 1970 1980 1990 2000 2010 2020
试验数据可知,在激光功率1400W、层厚1.0mm、扫描速度600mm/min、扫描间距1.3mm、成形角90°条件下,DED制备的Inconel718试件性能最好,其极限抗拉强度(UTS)和宏观硬度分别为1016.10MPa和36.2HRC。DED制备的Inconel718试件的UTS与传统锻造制备的Inconel718接近,且硬度更高。
摘要:镍基高温合金具有优异的耐腐蚀和耐高温性能,在能源和航空航天工业中广受欢迎。镍合金的直接金属沉积 (DMD) 已达到技术成熟度,可用于多种应用,尤其是涡轮机械部件的修复。然而,DMD 工艺过程中的零件质量和缺陷形成问题仍然存在。激光重熔可以有效地预防和修复金属增材制造 (AM) 过程中的缺陷;然而,很少有研究关注这方面的数值建模和实验工艺参数优化。因此,本研究的目的是通过数值模拟和实验分析来研究确定重熔工艺参数的效果,以优化 DMD 零件修复的工业工艺链。热传导模型分析了 360 种不同的工艺条件,并将预测的熔体几何形状与流体流动模型和选定参考条件下的实验单轨观测值进行了比较。随后,将重熔工艺应用于演示修复案例。结果表明,模型可以很好地预测熔池形状,优化的重熔工艺提高了基体和 DMD 材料之间的结合质量。因此,DMD 部件制造和修复工艺可以从此处开发的重熔步骤中受益。
镍基高温合金GH3536广泛应用于航空航天工业,具有良好的强度和抗高温氧化性能。本研究采用选区激光熔化 (SLM) 工艺制备GH3536试件,并进行热处理 (HT),研究了SLM和SLM-HT试件的微观组织、残余应力、拉伸强度和硬度。实验结果表明,由于快速冷却,SLM试件处于过饱和固溶状态,残余拉应力沿制备方向周期性地存在于亚表面。热处理后,富钼碳化物从基体中析出,降低了固溶程度。此外,由于热处理,SLM引起的残余拉应力转化为压应力,亚表面残余应力的周期性分布消失。研究结果表明,热处理抑制了SLM试件的固溶强化和晶界强化,导致硬度和屈服强度降低,断裂伸长率增加53%。本研究可为SLM成形GH3536镍基高温合金的应用提供指导。
1 引言 镍基高温合金具有优异的高温力学性能、高抗蠕变和疲劳性能以及非常好的耐腐蚀性能,被广泛应用于现代航空发动机和燃气轮机的涡轮叶片。镍基高温合金在恶劣条件下长期服役的性能,很大程度上取决于合金元素、合金浓度和强化相的形态。在工业实践中,镍基高温合金 René N5 在完全热处理状态下使用。固溶处理可使微观结构部分均质化,随后的时效可获得高体积分数的立方体状 γ′ 沉淀物。因此,获取更多有关铸态高温合金微观结构和性能的信息对于正确设计和控制后续热处理至关重要。枝晶间和枝晶间元素的凝固偏析会诱发非平衡相的形成,如碳化物、共晶相或其他低熔点相,这些相应在均质化过程中溶解[1-3]。
O li M d 10th J 2025 12 30 16 30 背景:高温材料通常用于发电厂和航空发动机的恶劣环境中。在这种苛刻的工业环境中,通常使用基于钛合金、镍基高温合金和钢的高温合金。此外,热障涂层(如铂铝化物)和中间层对于保护镍基高温合金在使用过程中免于快速劣化非常重要。材料加工、性能、微观结构和测试对于成功使用这些材料至关重要。本课程旨在介绍这些先进材料及其加工、性能和测试,用于能够抗蠕变、氧化和热疲劳的高温。本课程涉及以上所有方面。
定向能量沉积 (DED) 是一种很有前途的增材制造修复技术;然而,DED 易在薄壁部分产生表面波纹(驼峰),这会增加残余应力和裂纹敏感性,并降低疲劳性能。目前,由于缺乏具有高时空分辨率的操作监测方法,DED 中的裂纹形成机制尚不十分清楚。在这里,我们使用在线相干成像 (ICI) 来光学监测表面拓扑并原位检测开裂,结合同步加速器 X 射线成像来观察表面下裂纹的愈合和扩展。ICI 首次实现离轴对准(相对于激光器 24 ◦),从而能够集成到 DED 机器中,而无需更改激光传输光学系统。我们使用单元件 MEMS 扫描仪和定制校准板,实现了 ICI 测量值和激光束位置之间的横向(< 10 µ m)和深度(< 3 µ m)精确配准。 ICI 表面拓扑结构通过相应的射线照片(相关性 > 0.93)进行验证,直接跟踪表面粗糙度和波纹度。我们故意在镍基高温合金 CM247LC 的薄壁结构中植入隆起,在表面凹陷处局部诱发开裂。使用 ICI 现场观察到小至 7 µ m 的裂纹开口,包括亚表面信号。通过量化隆起和开裂,我们证明 ICI 是一种可行的现场裂纹检测工具。
Francesco Careri、Stano Imbrogno、Domenico Umbrello、Moataz M. Attallah、José Outeiro 等人。加工和热处理作为使用直接能量沉积制造的镍基高温合金结构的后处理策略。《制造工艺杂志》,2021 年,第 61 期,第 236-244 页。�10.1016/j.jmapro.2020.11.024�。�hal-03229886�