__________________________________________________________________________________________________________________________________________________________________ ______________________________________________________________________________________________________________________________________________________________________________________ <__________________________________________________________________________________________________________________________________________________________________ ______________________________________________________________________________________________________________________________________________________________________________________ <
摘要:热量存储(TES)对于各种应用的吸收和释放大量外热至关重要。对于此类存储,相变材料(PCM)已被视为可以集成到发电机中的可持续能源材料。但是,纯PCM在相变过程中存在泄漏问题,我们应该使用一些支撑材料制造形式稳定的PCM复合材料。为了防止在阶段过渡过程中的泄漏问题,使用两种不同的方法,微囊化和3D多孔的效果,用于在这项工作中制造PCM复合材料。发现,微球和3D多孔气凝胶支持的PCM复合材料在熔化过程中保持其初始固态而没有任何泄漏。与微封装的PCM复合材料相比,3D多孔气凝胶支撑的PCM由于其高孔隙率而表现出相对较高的工作材料重量分数。此外,交联的石墨烯气凝胶(GCA)可以在内置过程中有效减少体积收缩,而GCA支持的PCM复合材料保持高潜热(∆ H)并形成稳定性。
许多行业的 OEM 都依赖导热管理和电气 EMI/RFI 屏蔽来确保设备的最佳运行和最长使用寿命。许多应用会产生高热量或无数次温度循环,或在包括化学、物理或热应力的极端环境条件下运行。
互联网和微电子的持续进度,尤其是智能手机,平板电脑和智能手表等便携式设备,导致了紧凑,集成和微型化工具,消耗了高功率。第11代和第12代CPU是过去2年中笔记本电脑中使用的主要CPU。运营功耗已达到180 W,大小为50×25毫米。表面热孔最多可高达14.4 w/cm 2(Liu等,2013)。电子设备的微型化已大大降低了散热的有效区域。随着电子设备的功耗的连续升级,表面热量不可避免地会迅速增加,从而面临着由于有限的空间而带来的便携式电子设备的安全冷却限制(Micheli等,2013; Tang等,2018)。电子设备的可靠性显然对应保留在安全操作限制内的温度敏感。因此,需要不断开发高级散热技术,以避免由于过热而导致电子设备的损坏和故障。作为一种被动冷却技术,加热管已成为电子冷却的有效方法,考虑到高导热率,简单结构,没有外部驱动力(Su等,2018)。然而,传统的热管(例如环热,脉动热量和振荡热管)无法在有限的便携式电子设备的有限空间中满足高热量散热,这些设备较轻,更薄(Dai等,2020)。因此,由于其紧凑的尺寸,高稳定性和有效的温度均匀性,已广泛研究并在高热量便携式电子冷却中广泛研究并用于高热量便携式电子冷却。这项研究总结了UTHP技术和Wick结构的最新发展,并分析了挑战和未来的前景(Zhong等,2020)。
- 高热量Wi -Fi存储加热器。- 带有G控制配件和免费应用程序的Wi -Fi控件。太阳能输入与太阳能箱控制兼容。- 每日和每周编程。- 温度的三个级别:舒适,经济和霜冻保护。- IEM技术,是管理收费和排放的智能方式。- 高温电导率低的高质量绝缘材料。- 储物加热器各个侧面的双重高热量保留材料。- 具有校准选项的温度传感器。- 对存储加热功能的过热保护。- 带有手动重置的安全恒温器。- I类绝缘。- 由不锈钢制成的储存加热元件。- 前,侧面和后空气隔离室。- 由专门设计的Ecombi HHR制成的存储核心。- 涂层环氧树脂RAL 9010的钢结构粉。- 强大的热塑性配件。- 易于安装在任何类型的墙上。- 具有锁定选项的非常直观的键盘。- 与两个周期的峰值电价兼容,间隔为24小时。
在修改之前,选择了我们粗糙的木材,将其划分为质量,并将窑干燥至一致的水分含量。木材然后进入我们的修改过程,高热量和蒸汽改善了材料的尺寸稳定性,耐用性和视觉色调。一旦修改,这些木材就会磨成成品轮廓,其中还删除了任何不需要的特征,例如检查或末端裂缝。结果是一个漂亮的木板,直接,真实且可以使用。
对可持续和可行能源的需求不断增长,这推动了全球热解油市场。热解植物在没有氧气的情况下在非常高的温度下焚化废物,从废物塑料,聚合物,生物量以及废物橡胶和轮胎等来源获得热解油。由于其高热量价值,热解油可以用作工业燃料,以替代炉油或其他工业燃料。