[*]表示我是相应的作者[a]表明与第一作者[1]的同等贡献表示,我建议作为委员会主席[2]的研究生[3]指出了我所指导的研究生[3] [3]表示我在实验室期刊上建议的博士后研究员:Q Indices中的Q Indices,基于Scimago Journal和国家级等级。归类为Q1,Q2,Q3和Q4的期刊分别属于特定学科下的期刊的前25、25-50、50-75和75-100%。
随着迅速扩大的电动汽车(EV)市场,由于与常规的锂离子电池(LIBS)相比,由于其固有的优势和高能量密度的固有优势,迫切需要开发全稳态的LI电池(ASSB)。1将无机固体电解质(SES)作为必不可少的组件掺入可以利用Li金属阳极和高能量密度阴极,从而增加了能量密度。2领先的Sul sulsulese材料,例如Li 9.54 SI 1.74 P 1.44 S 11.7 Cl 0.3和Li 6.6 Si 0.6 SB 0.6 SB 0.5 S 5 I,在室温下在10 ms-cm-1上实现了极高的LI +电导率,在室温下,使用这些材料在室温下具有出色的液体效果,证明其具有杰出的液体性能与它们的液体效果相比可比性。3,4此外,sulsulsEs具有显着的低杨氏模量,可在室温下易于容易。5
通过增加储能系统 (ESS) 可以提高配电网的能源效率。这些系统的战略布局和适当大小有可能显著提高网络的整体性能。适当尺寸和战略位置的储能系统有可能有效解决峰值能源需求,优化可再生和分布式能源的增加,协助管理电能质量并降低与扩大配电网相关的费用。本研究提出了一种利用蒲公英优化器 (DO) 来找到配电网中 ESS 的最佳位置和大小的有效方法。目标是降低系统的年度总成本,其中包括与功率损耗、电压偏差和峰值负荷需求相关的费用。本研究中概述的方法在 IEEE 33 总线配电系统上实施。将所提出的 DO 获得的结果与原始系统的结果进行对比,以说明 ESS 位置对总体成本和电压曲线的影响。此外,还对 Ant Lion 优化器 (ALO) 的结果和预期的实验设计 DO 进行了比较,结果显示 DO 比 ALO 节省了更多成本。所推荐方法的简单性和解决所研究优化问题的有效性使所获得的 ESS 位置和大小有利于在系统内实施。
b'Abstract:使用高能量阴极在锂金属电池中极大地忽略了通用阴极的交叉,例如使用高能量阴极,从而导致严重的容量降解并引起严重的安全问题。在此,开发了由多功能活性位点组成的多功能和薄(25 \ XCE \ XBCM)中间层,以同时调节LI沉积过程并抑制阴极交叉。即使在10 MACM 2的高电流密度下,AS诱导的双梯度固相之间的相互作用结合了丰富的岩石嗜性位点也能稳定稳定的LI剥离/电镀工艺。此外,X射线光电子光谱和同步子X射线实验表明,富含N的框架和COZN双重活性位点可以有效地减轻不希望的阴极交叉,因此显着最大程度地减少了Li Li腐蚀。因此,使用各种高能阴极材料(包括LINI 0.7 MN 0.2 CO 0.1 O 2,LI 1.2 CO 0.1 Mn 0.55 Ni 0.15 O 2)组装的锂金属细胞,硫表现出明显改善的循环稳定性,并具有高阴极载荷。
摘要 - 公共场所的电动汽车(EVS)充电站(CSS)具有更高的安装和电力收集成本。公共CSS的潜在好处依赖于其有效利用。但是,常规的充电方法强迫等待时间很长,从而使其效率降低了。本文提出了一种新颖的模糊整数线性编程和CSS利用的启发式模糊推理方法(FIA)。该模型引入了基本模糊推理系统和用于获得最佳解决方案的详细公式。开发的模糊推理结合了不确定和独立的功率,所需的收费最新功率,并从功率网格和电动汽车域停留时间,并将它们与加权控制变量相关联。FIA通过使用加权控制变量解决目标函数来自动为电动汽车提供最紧急要求的服务,从而优化了
锂离子细胞由于多种细胞内衰老效应而导致降解,这可以显着影响电池能量储能系统(BESS)的经济性。由于降解率取决于外部应力因素,例如电荷,电荷/放电率和周期深度,因此可以通过操作策略直接影响它。在此贡献中,我们提出了一个模型预测控制(MPC)框架,用于设计老化的意识操作策略。通过模拟数字双胞胎上的整个BESS寿命,可以基准测试不同的老化意识优化模型,并且可以确定老化成本的最佳价值。在案例研究中,研究了通过套利交易在EPEX现场盘中电力市场上通过套利交易的应用。为此,提出了用于日历的线性化模型和磷酸锂细胞的环状容量损失。结果表明,与基于电池系统的成本选择老化成本相比,使用MPC框架来确定最佳的老化成本可以显着提高BES的寿命盈利能力。此外,与基于能量吞吐量的基于能量吞吐量的老化成本模型相比,使用线性化日历降解模型时,能量套利的生命周期利润可以增加24.9%,使用线性化日历和环状降解模型时,可以增加24.9%。通过检查2019年至2022年的价格数据,该案例研究表明,批发电力市场的价格和价格波动的最新上涨导致可实现的终身利润大幅增加。
锌电极处的树突状生长和形状变化,[4-10]锌 - 空气电池的性能仍然受到正极氧反应的缓慢动力学的限制。[1,11]已大力努力发展催化剂,以降低正极反应的过电势。在这种情况下,双功能催化剂的发展既可以使充电期间的氧气进化反应(OER)和放电期间的氧还原反应(ORR)受到了最近的关注。[1,2,11 - 13]但是,即使在锌 - 空气电池中具有高性能双功能催化剂,其预期的能量效率也接近65%,[14]必不可少的进一步改进,以进一步改进竞争性实施。Balamurugan等。[15]
高熵概念在材料和科学研究界是众所周知的发现亚稳态新材料的有效策略。例如,结构有序但多种元素组成无序的高熵合金可以实现前所未有的物理和机械性能。在材料科学领域,熵控制设计概念带来了无数发现,极大地影响了结构材料、热电和催化剂的发展。在过去十年中,高熵的理念对电池的发展产生了相当大的影响,包括电极和电解质[1]。传统的碳酸盐基电解质由于操作范围狭窄,成为先进电池的瓶颈。
电池储能系统在电信行业的实施,特别是用于增强的备份功率,提供了可靠,可扩展且环保的解决方案。通过利用贝斯的好处,电信服务提供商可以确保不间断的通信服务,可节省成本并减少碳足迹。此用例是电信行业其他公司探索电池能量存储潜力以提高备份功率可靠性的可能性的例子。