由于过去十年来环保意识的增强和燃料价格的波动,几个国家开始合作制定国家计划,以实现《巴黎协定》的气候协议目标。目前,电气化进程中最关键的挑战之一是传统发动机的更换。由于燃料和电池单位体积的能量密度存在很大差距,因此电气化后飞机重量增加。飞机的整体稳定性和配置受到重量变化的影响,因此需要进一步分析。本文重点讨论并提出电池存储系统在飞机中的可维护性和位置方面的未来解决方案。在方法论方面,为了验证研究解决方案,本文以计划改装混合动力推进系统的传统飞机作为案例研究。结果表明,电池系统必须分为两个主要类别,即能量和结构存储系统,前者涉及电池类型的选择以及根据所需的能量输出确定电池尺寸/重量,而后者涉及电池存储系统的定位和结构设计。
a 宾夕法尼亚州立大学材料科学与工程系 b 宾夕法尼亚州立大学机械工程系 c 阿贡国家实验室 X 射线科学部
摘要:本综述文章重点介绍了超级电容器的最新发展,指出了适当的电极和设备设计的重要性。我们报道了十种性能极高的超级电容器,其比电容值据我们所知是迄今为止最高的。这些采用创新电极材料的最先进设计已进行了讨论,并附有简短说明。这里收集的超级电容器具有促进下一代能量收集和存储系统的最有希望的潜力。这篇综述只是表面,可以帮助为超级电容器研究提供一条途径,该研究仍然为探索和开发用于未来能源应用的新型先进材料敞开大门。
摘要:在世界范围内,公民获得电力是必不可少的。这适用于刚果农村和城市居民,如果可能的话,政府的法律和政策应该保证这一点。然而,刚果民主共和国 (DRC) 的农村和城市地区严重缺乏电力。主要原因是与国家中央电网连接的成本高昂以及生产不足。因此,为这些地区通电的一种可行方法是使用微电网。这项技术是能源革命的可行选择,因为它结合了储能系统、分布式发电机和局部负载。本文首先分析了一些位于大河或水道 (已知深度和宽度) 边界的城市,例如考虑用于水动力 (HKP) 的刚果河,以实施这一解决方案。然而,在刚果河没有经过的地方,本文将考虑该地区最大的河流。对于光伏发电,大城市是指光照充足、人口众多且有购买光伏电力能力的城市。垃圾发电计划将考虑刚果民主共和国人口最密集的十大城市。拟建的微电网将以孤立模式运行。本文提出了 44 个项目,从微电网产生 795 690 kW 的总能量。这些能量分为 661 000 kW 来自太阳能光伏,83 790 kW 来自垃圾发电,50 900 kW 来自水力发电。城市份额将占这一发电量的 94.9%,农村地区份额将占 5.1%。进一步的工作需要将生物质作为一种可能的可再生能源加入到能源结构中。
在世界范围内,公民获得电力是必不可少的。这适用于刚果的农村和城市居民,如果可能的话,政府应该通过法律和政策来保障这一点。然而,刚果民主共和国 (DRC) 的农村和城市地区严重缺乏电力。主要原因是连接国家中央电网的成本高昂以及生产不足。因此,为这些地区通电的一种可行方法是使用微电网。这种技术是能源革命的可行选择,因为它结合了储能系统、分布式发电机和局部负载。本文首先分析了一些位于大河或水道(已知深度和宽度)边界的城市,例如刚果河,以考虑用于水动力 (HKP),从而实施该解决方案。但是,在刚果河流经的地方,本文将考虑流经该地区的最大河流。就光伏发电而言,大城市是指阳光充足、人口众多且有购买光伏电力能力的城市。垃圾焚烧发电计划将考虑刚果民主共和国人口密度最高的十大城市。拟建的微电网将以孤立模式运行。本文提出了 44 个项目,从微电网产生总能量 795 690 kW。这些能量分为 661 000 kW 来自太阳能光伏,83 790 kW 来自垃圾焚烧发电,50 900 kW 来自水力发电。城市份额将占这一发电量的 94.9%,农村份额将占 5.1%。进一步的工作需要将生物质作为一种可能的可再生能源添加到能源结构中。
根据用途,电池有不同的类型和尺寸,如硬币型、袋式、棱柱型或圆柱型电池。然而,制造方面的主要区别在于电极(阳极和阴极)的组装过程。组装过程基本上有两种方式:卷绕或堆叠。在卷绕过程中,电极被卷成圆柱形,有时被压平以适合棱柱形外壳,但主要用于圆柱形电池和硬币型电池。在堆叠过程中,电极片交替堆叠在一起。这种电极组件也经常被称为果冻卷或堆叠。无论哪种方式,阳极片都比阴极电极大。较大阳极与较小阴极之间的距离也称为阳极悬垂或阳极 - 阴极悬垂 (ACO)。阳极悬垂可以从几十分之一毫米到几毫米不等,具体取决于电池尺寸。理想的电池单元具有完美对齐的阴极和阳极水平,从而产生均匀的交流悬垂。
1 苏丹王子大学数学与科学系,邮政信箱 66833,利雅得 11586,沙特阿拉伯;muaffaqnofal69@gmail.com 2 哈米德·马吉德先进聚合物材料研究实验室,苏莱曼尼大学科学学院物理系,Qlyasan Street,Sulaimani 46001,库尔德斯坦地区政府,伊拉克 3 科马尔科技大学工程学院土木工程系,苏莱曼尼 46001,库尔德斯坦地区政府,伊拉克 4 苏莱曼尼大学科学学院化学系,Qlyasan Street,Sulaimani 46001,库尔德斯坦地区政府,伊拉克;hewa.ghareeb@univsul.edu.iq 5 人类发展大学健康科学学院科学医学实验室系,苏莱曼尼 46001,库尔德斯坦地区政府,伊拉克; jihad.chemist@gmail.com 6 数学与科学系,女子校区,苏丹王子大学,邮政信箱 66833,利雅得 11586,沙特阿拉伯;elhamdannoun1977@gmail.com 7 化学系,科学学院,诺拉公主大学,邮政信箱 84428,利雅得 11671,沙特阿拉伯;sialsaeedi@pnu.edu.sa * 通信地址:shujahadeenaziz@gmail.com
6 Increase of losses at the MOSFET with lowest V GS(th) ................................................................... 14 6.1 2 MOSFETs in parallel ............................................................................................................................ 14 6.2 4 MOSFETs in parallel ............................................................................................................................ 16 6.3 6 MOSFETs in parallel ............................................................................................................................ 18 6.4 Increase of worst case losses in relation to number of MOSFETs in parallel ...................................... 19
数据可用性声明:支持本研究结果的数据可根据合理要求从通讯作者处获取。1 H. Amano、Y. Baines、E. Beam 等人,2018 年 GaN 电力电子路线图,Journal of Physics D: Applied Physics。51,(2018)。2 K. Husna Hamza 和 D. Nirmal,GaN HEMT 宽带功率放大器综述,AEU - 国际电子和通信杂志。116,153040 (2020)。3 G. Meneghesso、M. Meneghini、I. Rossetto、D. Bisi、S. Stoffels、M. Van Hove、S. Decoutere 和 E. Zanoni,GaN 基功率 HEMT 的可靠性和寄生问题:综述,半导体科学与技术。31,(2016)。 4 JA del Alamo 和 J. Joh,GaN HEMT 可靠性,微电子可靠性。49,1200-1206 页 (2009)。5 M. Meneghini、A. Tajalli、P. Moens、A. Banerjee、E. Zanoni 和 G. Meneghesso,基于 GaN 的功率 HEMT 中的捕获现象和退化机制,半导体加工材料科学。78,118-126 页 (2018)。6 B. Kim、D. Moon、K. Joo、S. Oh、YK Lee、Y. Park、Y. Nanishi 和 E. Yoon,通过导电原子力显微镜研究 n-GaN 中的漏电流路径,应用物理快报。104,(2014)。 7 M. Knetzger、E. Meissner、J. Derluyn、M. Germain 和 J. Friedrich,《用于电力电子的碳掺杂变化与硅基氮化镓垂直击穿之间的关系》,《微电子可靠性》。66,16-21 (2016)。 8 A. Lesnik、MP Hoffmann、A. Fariza、J. Bläsing、H. Witte、P. Veit、F. Hörich、C. Berger、J. Hennig、A. Dadgar 和 A. Strittmatter,《碳掺杂氮化镓的性质,固体物理状态 (b)》。254,(2017)。 9 B. Heying、EJ Tarsa、CR Elsass、P. Fini、SP DenBaars 和 JS Speck,《位错介导的氮化镓表面形貌》,《应用物理学杂志》。 85,6470-6476 (1999)。