建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术建立评估和优化营养状况的技术
私たちはインヒビンのモノクローナル抢夺( AIMA )を作制しました。この AIMAは、过排卵效果としてはインヒビンのポrikuroーナル抗体である抗血清に及びませんが、携带动物自身のFSHで卵子を発育させるために母体に优しく、 はマイルドな过排卵法です。これは相同性能の抗体が大量に作制できて、抗血清と异なり、动物からの微生物感染配配心のないクrinな试薬という利点があります。マウを用いた先行研究ではこの AIMA を投与することで子供の数が 1.4 倍に増加し、初めて安定して搬运歯动物の产子数を増やすための试薬を开発することができました注1) 。本研究ではラttoでも多くの系统で同様な效果が得られるかを検证するため、京都大学、东海大学との共同研究を行いました。 注1 ) Hasekawa ら、使用增加小鼠产仔数的抗抑制素单克隆抗体菌株及其在体内基因组编辑技术中的应用生殖生物学,2022:107(2):605-618。 研究方法と成果
摘要:将声子视为不同类型的量子系统之间的连贯中介。工程的纳米级设备,例如光力机械晶体(OMC),提供了一个使用声子作为量子信息载体的平台。在这里,我们演示了钻石中的OMC,专为声子与硅空位(SIV)自旋之间的相互作用而设计。使用Millikelvin温度下的光学测量值,我们测量6 GHz声学模式的线宽度为13 kHz(Q因子约为4.4×10 5),在GHz频率范围内的钻石记录在硅硅频率范围内,在Silicon中的最大程度上的线路宽度范围内。我们研究了这些设备中的SIV光学和自旋特性,并概述了通向连贯的自旋 - 声子界面的路径。关键字:光学力学,硅空缺,钻石,声子
摘要:二维(2D)半导体最近由于其独特的光学和电子特性而引起了光传递的极大兴趣。然而,对于单层光晶体管,可检测到的光谱范围和光吸收效率通常非常有限。在这里,我们演示了基于零差(0D)硅量子点(SIQDS)和二硫化钼(MOS 2)形成的范德华异质结构(VDWH)(VDWH)(VDWH)(VDWH),尤其是在Ultraviolet(UV)的光谱范围内,该光谱(MOS 2)表现出很高的检测和响应率。与单独基于单层MOS 2的光晶体管相比,SIQD/MONOLAYER MOS 2 VDWH光晶体管的探测率提高了100倍(从1.0×10 12到1.0×10 12到1.0×10 14 cm×Hz 1/2/w),响应率提高了89倍,响应率提高了66.7秒66.7至66.7 s/f。对于SIQD/几层MOS 2 VDWH,还观察到增强的检测和响应性。分析和对照实验表明,跨SIQD/MOS 2 VDWH的电荷转移导致光子效应和光量。高性能SIQD/MOS 2 VDWH光晶体管对超敏化光检测,基于紫外线的光学通信,神经形态视觉传感和发射速度计算应用具有巨大的希望。关键字:0d/2d van der waals异质结构,Si Quantum Dot,MOS 2,光晶体管,高检测性,高响应率■简介
背景和目的:避免海马 - 整个脑放射疗法(HA-WBRT)可能是一个耗时的过程,与常规的全脑技术相比,因此有可能限制广泛利用。因此,我们通过利用计算机断层扫描(CT)基于计算机的商业自适应放射疗法(ART)平台和工作流程来创建和交付不含患者特定于患者的无模拟HA-WBRT,通过剂量 - 体积指标和时间来评估了In In In In In In In In In inico临床可行性。材料和方法:这项研究包括了十名先前接受过具有锥束计算机断层扫描(CBCT)成像的中枢神经系统癌症治疗的患者。CBCT是模拟第一部分板载成像的自适应图像。在MRI上定义的初始轮廓与CBCT匹配。在线艺术是在第一部分制定治疗计划的。将这些无模拟计划的剂量 - 体积指标与每个患者CT仿真数据集中的标准工作流程HA-WBRT计划进行了比较。记录了自适应计划会话的定时数据。结果:对于所有十名患者,无模拟的HA-WBRT计划通过在线艺术工作流程成功地制定了所有限制。在自适应计划中,海马中位数100%为7.8 Gy(6.6 - 8.8 Gy),而标准工作流计划中的8.1 Gy(7.7 - 8.4 Gy)。由于海马约束(6/10自适应分数)和亚最佳目标覆盖范围(6/10自适应片段),所有计划都需要在第一部分进行自适应。自适应课程的中间时间为45.2分钟(34.0 - 53.8分钟)。结论:通过计划质量指标和时间安排在临床上可行的无模拟Ha-wbrt在临床上是可行的。
经理负责采购商品、服务和执行工程所需的所有业务活动,也可以通过直接分配,与艺术所预见和规定的内容保持一致。36,第 2 段,信件。a) 立法法令n. 2016 年 4 月 18 日第 50 号立法法令(经第 56/2017 号立法法令修订)并符合该条例为上述商业活动制定的标准;鉴于学院理事会以第 199 号决议通过的学院业务活动规章制度, 2019年 3月 7日 9;了解该学院的三年教育优惠计划 (P.T.O.F.);考虑到需要确保定期进行预定的行政/教学活动;已查看 E.F. 年度计划2021 年经研究所理事会第 2021 号决议批准。 2021年2月15日第35号;已经看到了决心的保护。n. 2018 年 12 月 28 日第 8165 号法令,用于分配 n 的租赁和维护服务。 6 台 A3 多功能复印机和
本文研究了光纤的设计和优化,以实现高速数据传输,强调了最大程度地提高现代通信网络效率的进步。光纤(全球通信基础架构的核心组成部分)能够在长距离内传输数据,而通过总内部反射等原则,损失最小。本研究探索了单模和多模式光纤设计,提供了关键参数的概述,例如核心直径,折射率索引程序和数值孔径。使用麦克斯韦方程的数学建模在优化纤维性能方面起着核心作用,帮助工程师缓解诸如衰减和分散等挑战。本文还讨论了高级技术,包括密度波长多重多路复用(DWDM),该技术可实现每秒数据速率。实践应用中的案例研究,例如纤维到家(ftth)网络和跨加工电缆,突出了优化设计对网络绩效的影响。展望未来,预计光子晶体纤维和空心纤维的创新将推动进一步的改进,从而实现超高速度数据传输。本文结束了持续研发的意义,以应对光纤技术的挑战并支持全球通信系统的需求不断增长。
摘要 - 近几十年来,对计算能力的需求激增,特别是随着人工智能(AI)的迅速扩展。当我们浏览后摩尔法律时代时,传统电气数字计算的局限性(包括过程瓶颈和功耗问题)正在探索替代计算范式。在各种新兴技术中,综合光子学成为下一代高性能计算的有前途的解决方案,这要归功于光的固有优势,例如低潜伏期,高带宽和独特的多路复用技术。此外,配备丰富的光电子组件的光子整合电路(图片)的进展,将光电电子集成电路定位为高性能计算和硬件AI加速器的可行效果。在这篇综述中,我们调查了基于PIC的数字和模拟计算的最新进步,以探讨实施的主要收益和障碍。此外,我们从硬件实现,加速器体系结构和软件硬件共同设计的观点中对光子AI进行了全面分析。最后,承认现有的挑战,我们强调了克服这些问题的潜在策略,并为未来的驱动力提供了光学计算的见解。
摘要:近几十年来,基于侵入性临床研究的大量证据表明,高频振荡(HFOS)是癫痫发作区(SOZ)定位的有希望的生物标志物,因此,有可能改善术后外的癫痫病患者。新兴的临床文献表明,可以使用诸如头皮电解学(EEG)和磁脑摄影(MEG)之类的方法对HFO进行无创记录。不仅HFO被认为是SOZ的有用生物标志物,而且还具有衡量疾病严重程度,监测治疗和评估前进结果的潜力。在本文中,我们回顾了有关人脑中非侵入性检测到的HFO的最新临床研究,重点是癫痫。 无创检测到的头皮HFO已在各种类型的癫痫病中进行了研究。 HFO也在其他病理性脑部疾病(例如偏头痛和自闭症)中进行了无创研究。 在此,我们讨论了非侵入性HFO研究中报告的挑战,包括在临床环境中MEG和高密度EEG设备缺乏,低信号比率,缺乏临床批准的自动检测方法,以及在物理和病理HFOS之间区分的难度。 需要有关HFO的非侵入性记录方法的其他研究,尤其是前瞻性多中心研究。 进一步的研究是基本的,在临床环境中经常评估HFO之前,需要进行大量工作;但是,未来似乎很有希望。在本文中,我们回顾了有关人脑中非侵入性检测到的HFO的最新临床研究,重点是癫痫。无创检测到的头皮HFO已在各种类型的癫痫病中进行了研究。HFO也在其他病理性脑部疾病(例如偏头痛和自闭症)中进行了无创研究。在此,我们讨论了非侵入性HFO研究中报告的挑战,包括在临床环境中MEG和高密度EEG设备缺乏,低信号比率,缺乏临床批准的自动检测方法,以及在物理和病理HFOS之间区分的难度。需要有关HFO的非侵入性记录方法的其他研究,尤其是前瞻性多中心研究。进一步的研究是基本的,在临床环境中经常评估HFO之前,需要进行大量工作;但是,未来似乎很有希望。