关于凯捷政府解决方案有限责任公司 凯捷政府解决方案成立于 2002 年,是一家总部位于弗吉尼亚州麦克莱恩的美国公司。凯捷与美国联邦政府组织合作,为全球公共和私营部门提供转型任务所需的洞察力和经验。凯捷的美国联邦业务为我们庞大的民用、卫生、国家安全和国防客户提供企业和技术现代化解决方案。借助凯捷政府解决方案,实现您想要的未来。有关凯捷政府解决方案的更多信息,请访问 www.capgemini.com
在本版的见解中,约克大学的彼得·鲍尔(Peter Ball)教授给出了他对在农业和生物生物价值链中开发创新思维的机会的观点。niab的内森·莫里斯(Nathan Morris)概述了新的现场研究,以调查旋转覆盖作物如何增加土壤有机碳和增长的系统弹性,而科茨沃尔德种子的杰德·索利曼(Jed Soleiman)描述了评估多种草药对农作物生产力和碳捕获的多种草药益处的现场试验。在“来自枢纽的新闻”中,我们重点介绍了CHCX3和其他地方的碳捕获种植中的新发展。我们从剑桥郡农民卢克·帕尔默(Luke Palmer)听到了他如何探索新的种植选择以增强碳捕获的新作品,以及从生物金属企业发展中心和Unyte Hemp探索他们在项目中分别在价值链和工业大麻上领导的工作。
在孵育的前10天内暴露于CO 2的浓度增加可能会对鸟类心脏和呼吸器官的发展产生影响。此外,育种时代可以影响孵化性能。这项研究旨在研究孵育的前10天,在孵化的前10天暴露于增加的CO 2的影响对胚胎和小鸡消化系统的形态生理发展的影响,来自31和41周的肉鸡育种者。A total of 860 fertile eggs from the Cobb strain were distributed in a completely randomized design, in a 2 x 2 factorial arrangement, with 2 different gaseous environments (Control (C) – no increase in CO 2 concentration and, Hypercapnia (CO 2 ) – a gradual increase in CO 2 concentration until reaching 1% on the 10th day) and 2 different broiler breeder ages (31 and 41 weeks).一半的鸡蛋是从31周龄的育种者那里获得的,另一半是从41周的繁殖者那里获得的。与对照组相比,在1%CO 2的大气中孵育导致胚胎的绒毛,空肠和回肠的绒毛高度升高,同一段中绒毛密度的降低。来自41周龄的肉鸡育种者的小鸡在伙伴后第1天,在十二指肠,空肠和回肠的绒毛高度上显示出较高的绒毛高度,而在7天时,绒毛密度较低。得出的结论是,在高碳酸盐条件下肥沃的卵的孵育可能会对胚胎和后雏鸡的小肠产生积极影响。
摘要:本文利用碳纳米纤维 (CNF)/碳纳米墙 (CNW) 的优点,进行了一项新的合成方法,以改善锂离子电池负极材料的特性。在碳基纳米材料中,CNW 具有低电阻和高比表面积的特点。CNF 具有可拉伸和耐用的优势。使用微波等离子体增强化学气相沉积 (PECVD) 系统以甲烷 (CH 4 ) 和氢气 (H 2 ) 混合气体生长 CNW。将聚丙烯腈 (PAN) 和 N,N-二甲基甲酰胺 (DMF) 搅拌以制备溶液,然后使用静电纺丝法制备纳米纤维。然后使用热板在空气中进行热处理以稳定化。此外,使用快速热退火 (RTA) 在 800 ◦C 下进行 2 小时的热处理以生产 CNF。使用场发射扫描电子显微镜 (FE-SEM) 确认 CNFs/CNWs 负极材料的表面和横截面图像。使用拉曼光谱检查结构特征和缺陷。进行循环伏安法 (CV)、电化学阻抗谱 (EIS) 和恒流充电/放电测试以分析电气特性。合成的 CNFs/CNWs 负极材料具有易于进行氧化和还原反应的 CV 值,并确认了 93 Ω 的低 Rct 值。
摘要。探索了通过熔丝制造和烧结技术生产高碳钢/Inconel 718 双金属零件的可能性。分析了两种合金的兼容性,特别关注元素通过界面的相互扩散以及沉积策略的影响。研究了微观结构特征、相对密度和零件收缩。虽然最初的试验工艺参数值不足以达到可接受的材料致密化,但观察到 Inconel 718 和碳钢之间良好的结合,这表明有可能获得具有多种材料性能的完美双金属零件。由于致密化动力学的差异,烧结温度被发现是优化以最小化孔隙率的最关键工艺参数。关键词。增材制造、熔丝沉积、双金属材料、Inconel 718、高碳钢、微观结构、相互扩散、缺陷。
摘要:通过 1,8-二氨基萘衍生物的电化学反应对平面碳电极进行廉价的溶液相改性,通过形成 15 - 22 纳米厚的有机薄膜,使容量增加了 120 至 700 倍。用相同方法改性高表面积碳电极可使容量增加 12 至 82 倍。改性层含有 9 - 15% 的氮,以 - NH - 氧化还原中心的形式存在,从而产生较大的法拉第分量,每个电子对应一个 H + 离子。在 0.1 MH 2 SO 4 中长时间循环后,电极没有容量损失,并且电荷密度明显高于基于石墨烯和聚苯胺的类似报道电极。对沉积条件的研究表明,N 掺杂的低聚物带是由重氮离子还原和二氨基萘氧化形成的,而 1,8 异构体对于大容量增加至关重要。容量增加至少有三个原因:带形成引起的微观表面积增加、含氮氧化还原中心的法拉第反应以及极化子形成导致的带电导率变化。开发了一种水相制造工艺,既提高了容量,又提高了稳定性,并且适合工业生产。二氨基萘衍生薄膜的高电荷密度、低成本制造和 <25 纳米厚度应该对平面和高表面积碳电极的实际应用具有吸引力。关键词:超级电容器、可再生能源、重氮还原、法拉第储能、导电聚合物/碳复合材料、N 掺杂碳材料
