摘要:地形机载 LiDAR 数据的使用已成为考古勘探的重要组成部分,并且对考古特定数据处理工作流程的需求是众所周知的。因此,令人惊讶的是,很少有人关注处理的关键要素:考古专用 DEM。因此,本文的目的是详细描述考古专用 DEM,提供其自动精度评估工具,并确定适当的网格分辨率。我们将考古专用 DEM 定义为 DEM 的子类型,它是从地面点、建筑物和四种形态类型的考古特征插值而来的。我们引入了一个置信度图(QGIS 插件),为每个网格单元分配一个置信度。这主要用于为每个考古特征附加一个置信度,这对于检测考古解释中的数据偏差很有用。置信度映射也是确定特定数据集最佳网格分辨率的有效工具。除了考古应用之外,置信度图还为分割提供了明确的标准,这是 DEM 插值中尚未解决的问题之一。所有这些都是朝着机载 LiDAR 在考古学中的一般方法成熟迈出的重要一步,这是我们的最终目标。
使用线性最小二乘回归技术,以 250 米的空间分辨率概括了经多尺度卷积、形态和纹理变换过滤的免费数字高程模型 (DEM) 全球数据中建筑区的垂直分量估计值。选择了六个测试案例:香港、伦敦、纽约、旧金山、圣保罗和多伦多。根据 60 种线性、形态和纹理过滤组合以及不同的概括技术,对五个全球 DEM 和两个 DEM 复合材料进行了评估。引入了四种广义的建筑区垂直分量估计值:平均建筑总高度 (AGBH)、平均净建筑高度 (ANBH)、建筑总高度标准差 (SGBH) 和净建筑高度标准差 (SNBH)。研究表明,ANBH 和 SNBH 给出的净 GVC 最佳估计值总是比 AGBH 和 SGBH 给出的相应总 GVC 估计值包含更大的误差,无论是平均值还是标准差。在本研究评估的源中,使用单变量线性回归技术估计建筑区 GVC 的最佳 DEM 源是使用联合运算符 (CMP_SRTM30-AW3D30_U) 的 1 弧秒航天飞机雷达地形测绘任务 (SRTM30) 和先进陆地观测卫星 (ALOS) 世界 3D-30 米 (AW3D30) 的组合。使用 16 颗卫星开发了一个多元线性模型
简介。空间分析是任何 GIS 研究的顶峰。空间分析有四种传统类型:表面分析、空间叠加和邻接分析、线性分析和栅格分析。数字高程模型 (DEM) 的空间分析是一项复杂的科学任务。DEM 是相对于任何参考基准的陆地表面高程的数字表示。DEM 经常用于指代地形表面的任何数字表示。DEM 是地形数字表示的最简单形式。DEM 用于确定地形属性,例如任意点的高程、坡度、坡向。DEM 广泛用于水文和地质分析。DEM 的水文应用包括地下水建模、确定滑坡概率、洪水易发区制图。DEM 是土壤状态、景观和栖息地建模的基础。DEM 的空间结构形态分析可以看作是景观及其地质生态状态信息清单的一种方法。该技术能够综合有关侵蚀-积累过程强度不同的景观位置的信息。此类信息对于组织区域平衡的自然管理系统至关重要。调查方法。许多 GIS 软件应用程序既有商业来源也有开源来源。有两个流行的应用程序:ArcGIS 和 QGIS。本研究使用 ArcGIS 工具和 Topo to Raster 方法进行了研究,以创建特定的 DEM 模型。地形转栅格是一种专门的工具,用于从地形组件(例如高程点、等高线、河流线、湖泊多边形、汇点和研究区域边界多边形)的矢量数据创建符合水文要求的栅格表面。此工具应用于本地级研究。应用 TIN 建模为数据不足的区域生成附加数据,以进行正确的地形转栅格插值。ArcGIS Spatial Analyst Extension Toolkit 中的水文建模工具可以描述表面的物理组成部分。水文工具使我们能够确定流向、计算流量累积、描绘流域并创建河流网络。DEM 的空间分析用于形态景观组织的建模,与 Philosofov (1960) 提出的地形形态研究方法有关。其本质是由对由 DEM 创建的划定流域和流积表面应用数学运算决定的。调查结果。地形地貌测量在过去几十年中得到了广泛的发展,在方法论和研究主题领域取得了重要成果。针对最常见的地形参数 - 测高、坡度、坡向、带状剖面、线纹和排水密度、表面粗糙度、等基线和水力梯度,提出了一种将 GIS 和统计学整合到地形分析中的方法。地貌分析的有效方法是结构地形学和地形测量学,它们以前基于地形图分析,现在基于可靠的 DEM。DEM 是地形的网格化数字表示,每个像素值对应于基准面以上的高度。自 Miller 和 Laflamme (1958) 的开创性工作以来,DEM 已发展成为许多科学应用不可或缺的一部分。DEM 可以通过地面调查、数字化现有硬拷贝地形图或通过遥感技术创建。DEM 现在主要使用遥感技术创建。遥感技术包括摄影测量 (Uysal et al., 2015; Coveney and Roberts, 2017)、机载和星载干涉合成孔径雷达 (InSAR) 和光检测和测距 (LiDAR)。星载 InSAR 是创建全球 DEM 的最常用技术,也是最广泛使用的开放获取全球 DEM 背后的技术;航天飞机雷达地形测绘任务 (SRTM)。与其他全球 DEM 相比,SRTM 具有可访问性、特征分辨率、垂直精度以及更少的伪影和噪声,因此仍然是最受欢迎的全球 DEM(Rexer 和 Hirt,2014;Jarihani 等人,2015;Sampson 等人,2016;Hu 等人,2017)。评估 SRTM 数据的准确性(Farr,T. G.,P. A. Rosen 等人。(2007),Rodriguez,E.,C. S. Morris 等人。(2005) 允许将其用于区域研究。SRTM 数据被定义为不足以在本地研究中生成可靠的 DEM。
本文件为根据 18 CFR § 806.14(a)(6) 和 (c)(5)、CFR § 806.22(e)(4)、CFR § 806.22(f)(4) 提交的项目申请所需的计量计划的准备提供指导,该计划应遵守 18 CFR § 806.30 中关于监测取水和消耗性用途的方法的标准。它还为根据 18 CFR § 806.14(b)(2)(iv) 提交的地下水取水申请所需的地下水高程监测计划 (GWEMP) 提供指导,该计划应遵守 18 CFR § 806.30 中的标准。具体而言,本指南适用于新建、更新、重大修改、小修改(如适用)、消耗性用途和转移申请的地表水源或地下水源项目。
摘要 埃及尼罗河三角洲地区需要一种高精度数字高程模型 (DEM) 用于多种环境应用,特别是用于研究海平面上升和地面沉降现象的危险影响。由于埃及没有官方发布的国家 DEM,因此在地理信息系统 (GIS) 环境中使用九种空间插值方法 (SIM) 为该地区创建了一个原始的高精度局部数字高程模型 (LDEM)。插值过程是在数字化超过 220 幅比例为 1:25,000 的地形图之后进行的,从这些地图中提取了超过 810,000 个高程(点高程)点。每个 SIM 都应用了多个参数和标准,以达到最佳设置,从而生成用于环境应用的 LDEM。使用大约 200 个已知的 GPS/水准地面控制点 (GCP),将开发的 LDEM 与八个免费的全球数字高程模型 (GDEM) 进行了比较,在对所有使用的数据集应用垂直和水平基准匹配以及异常值检测程序后,对 GDEM 和 LDEM 残差进行了统计评估。此外,还计算了可靠性指数 (RI),以确定尼罗河三角洲地区的最佳 DEM。完成的结果表明,EARTHEnv-DEM90 获得了最高的 RI 5.47,是最佳的全球 DEM。对于局部 DEM 的插值方法,结论是 Kriging-b
*Eawag:瑞士联邦水生科学与技术研究所,瑞士。电子邮件地址:joaopaulo.leitao@eawag.ch **贝尔格莱德大学土木工程系,塞尔维亚贝尔格莱德。电子邮件地址:eprodano@hikom.grf.bg.ac.rs ***伦敦帝国理工学院土木与环境工程系,英国伦敦。电子邮件地址:c.maksimovic@imperial.ac.uk
海拔与经纬度相结合,可提供描述地形的三维 (3D) 位置信息,这对于山地研究和开发至关重要 (Ko¨ rner 2007;Malhi et al 2010)。亚历山大·冯·洪堡是最早认识到这一点的西方探险家之一:他在墨西哥、哥伦比亚和厄瓜多尔山区的探险表明,了解地球表面生物物理特征的 3D 位置对于制图以及了解沿海拔梯度相互作用的生物、非生物和人为因素之间的分布关系非常重要 (Godlewska 1999;Zimmerer 2006;von Humboldt 2013)。从那时起,人类学家、地理学家和生态学家就一直试图量化和可视化海拔如何影响山区的各种现象 (McVicar and K¨ rner 2013)。例如,研究表明,海拔升高会导致物种分布(Feeley 等人,2011 年)、作物多样性(Zimmerer,1999 年)、农业用地(Guillet,1981 年;Brush,1982 年;Young,1993 年)、净初级生产力(Beck 等人,2008 年;Zhang 等人,2013 年)和生物地球化学循环(Girardin
1.简介 2010 年 4 月,美国国家海洋和大气管理局 (NOAA) 下属的国家地球物理数据中心 (NGDC) 开发了路易斯安那州新奥尔良的三个水深地形数字高程模型 (DEM)(图1)。这些 DEM 是根据 2009 年美国复苏与再投资法案 (ARRA) 1 为 NOAA 海岸调查发展实验室 (CSDL) 开发的,旨在评估 Vertical.Datum 的实用性。转换工具 ( VDatum ) 由 NOAA 海岸调查办公室 (OCS)、国家大地测量局 (NGS) 和业务海洋产品和服务中心 (CO-OPS) 联合开发 ( http://vdatum.noaa.gov/ )。参考 1988 年北美垂直基准 (NAVD 88) 的 1/3 弧秒 2 DEM 经过精心开发和评估。从 VDatum 派生的 NAVD 88 到平均高水位 (MHW) 1/3 弧秒转换网格。然后创建项目区域以模拟新奥尔良地区的 NAVD 88 和 MHW 之间的关系。NGDC 将 NAVD 88 DEM 和转换网格结合起来开发了 1/3 弧秒 MHW DEM。使用相同的过程生成平均低低水位 (MLLW) 1/3 弧秒转换网格。NAVD 88 DEM 是根据该地区的各种数字数据集生成的(网格边界和来源如图 1、5 和 10 所示),这些 DEM 将用于风暴潮淹没和海平面上升建模。本报告总结了开发三个新奥尔良 DEM 所使用的数据源和方法。
关键词 机载 LiDAR;DEM;过滤;地质考古学;微地形;景观可视化;多尺度概念 摘要 本文讨论了基于高密度机载 LiDAR(光检测和测距)数据生成高精度 DEM(数字高程模型),用于跨学科景观考古研究,研究比利时根特北部 Sandy Flanders 地区的定居历史和环境。目标是创建一个没有人工特征和地形伪影的详细地形表面,以 DEM 的形式,仅通过实现真实地面点来可视化自然和当前地形。这些特征和伪影的半自动去除基于地形矢量数据、视觉解释和坡度分析。最终构建了两个 DEM:(1)TIN(不规则三角网)模型,其固有的大文件格式限制了其在大规模上的可用性;(2)网格模型,可用于小规模、中规模和大规模应用。这两个数据集都用作使用历史资料中的辅助数据进行解释的图像。其实用性在田野模式和微田野地形的案例中得到了说明。从这个 DEM 开始,这项景观历史研究的方法主要是倒退性的,即从当代景观中仍然存在并不断移动的景观结构和元素开始
本文讨论了基于高密度机载 LiDAR(光检测和测距)数据生成高精度 DEM(数字高程模型)的方法,该方法用于跨学科景观考古学研究,研究对象为位于比利时根特北部的 Sandy Flanders 地区的定居历史和环境。目标是以 DEM 的形式创建一个详细的地形表面,其中不含人工特征和地形伪影,仅通过实现真实地面点来可视化自然和当前地形。这些特征和伪影的半自动去除是基于地形矢量数据、视觉解释和坡度分析。最终构建了两个 DEM:(1)TIN(不规则三角网络)模型,其固有的大文件格式限制了其在大比例尺下的可用性;(2)网格模型,可用于小、中、大比例尺应用。这两个数据集都用作使用来自历史来源的辅助数据进行解释的图像。其实用性在田野模式和微田地形的案例中得到了说明。从这个 DEM 开始,这项景观历史研究的方法主要是回溯性的,即从当代景观中仍然存在的景观结构和元素开始,然后进入过去。� 2010 年由 Elsevier Ltd. 出版。