水电行业目前正在经历多项技术发展。新技术和实践不断涌现,使水电更加灵活和可持续。最近还开发了新材料来提高性能、耐用性和可靠性;然而,在文献中找不到系统的讨论。因此,本文介绍了用于水电应用的新材料,并讨论了它们的性能、优势和局限性。例如,复合材料可以将钢制设备的重量减轻 50% 至 80%,聚合物和超疏水材料可以将水头损失减少 4% 至 20%,新型轴承材料可以将轴承磨损减少 6%。这些改进决定了更高的效率、更长的使用寿命、减少浪费和维护需求,尽管某些材料的初始成本与传统材料的成本相比尚不具有竞争力。本文根据以下类别描述了新材料:用于涡轮机、水坝和水道、轴承、密封件和海洋水电的新材料。2021 作者。由 Elsevier LTD 代表中国工程院和高等教育出版社有限公司出版。本文为 CC BY-NC-ND 许可下的开放获取文章 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )。
人工智能(AI)的快速发展促进了各个领域的各种应用,但由于数据的爆炸性增长,在速度和能源方面也构成了巨大的挑战。光学计算通过利用光子的独特特性,包括宽带宽度,低潜伏期和高能量效率来解决这种瓶颈,从而提供了独特的观点。在这篇评论中,我们介绍了针对不同AI模型的光学计算的最新发展,包括前馈神经网络,储层计算和尖峰神经网络(SNNS)。综合光子设备的最新进展以及AI的崛起,为在实际应用中的光学计算复兴提供了绝佳的机会。这项工作需要广泛社区的多学科努力。本评论概述了近年来最先进的成就,讨论了当前技术的可用性,并指出了各个方面的剩余挑战以推动边境。我们预计,大型集成光子处理器的时代将很快以混合光电框架的形式到达实用AI应用。2021作者。由Elsevier Ltd代表中国工程学院和高等教育出版社有限公司出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
在高电流操作条件下发展高性能的氧气进化反应(OER)电催化剂对于碱性水电解的未来商业应用至关重要。在此,我们准备了一个三维(3D)双金属氧氧化物杂交杂种,该杂交杂种在Ni泡沫(NifeOOOH/NF)上生长,该杂种是通过将Ni Foam(NF)浸入Fe(NO 3)3溶液中制备的。在这种独特的3D结构中,NifeOOH/NF杂种由Crystalline Ni(OH)2和NF表面上的无定形FeOOH组成。作为双金属氧氧化电催化剂,NifeOOOH/NF混合动力表现出极好的催化活性,不仅超过了其他报道的基于NI -FE的电催化剂,而且超过了商业IR/C催化剂。原位电化学拉曼光谱学证明了参与OER过程的活性FeOOH和NiOOH相。从Fe和Ni催化位点的协同作用中,NifeOOOH/NF混合动力在80 C的10.0 mol l 1 KOH电解质下在具有挑战性的工业条件下提供了出色的OER性能,需要在1.47和1.51 V中的潜力,以达到1.47和1.51 V,以达到1.47和1.51 V,以达到超高的催化电流的100和500 mA。2021作者。由Elsevier Ltd代表中国工程学院和高等教育出版社有限公司出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
神经假体是一种精密医疗设备,旨在以闭环方式操纵大脑的神经信号,同时接收来自环境的刺激并控制人脑或身体的某些部分。大脑可以在几毫秒的间隔内处理传入的视觉信息。视网膜计算视觉场景并将其输出以神经元尖峰的形式发送到皮质进行进一步计算。因此,视网膜神经假体感兴趣的神经元信号是神经元尖峰。神经假体中的闭环计算包括两个阶段:将刺激编码为神经元信号,然后将其解码回刺激。在本文中,我们回顾了使用尖峰分析包括静态图像和动态视频在内的自然场景的视觉计算模型的一些最新进展。我们假设,为了更好地理解视网膜的计算原理,需要对视网膜进行超电路视图,在该视图中,在与视网膜交互时需要考虑皮质神经元网络中已揭示的不同功能网络模式。视网膜的不同组成部分包括多种细胞类型和突触连接——化学突触和电突触(间隙连接)——这使视网膜成为理想的神经元网络,可以采用人工智能中开发的计算技术来模拟视觉场景的编码和解码。为了推进下一代视网膜神经假体作为人工视觉系统的发展,需要采用具有神经元尖峰的视觉计算的整体系统方法。2020 作者。由爱思唯尔有限公司代表中国工程院高等教育出版社有限公司出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
全球气候变化和当地人的累积影响,世界的珊瑚礁受到威胁。在很大程度上是出于了解渴望了解珊瑚与其共生微生物之间的相互作用,并利用这些知识最终改善珊瑚健康,对珊瑚微生物的兴趣和珊瑚微生物组近年来有所增加。在这篇综述中,我们总结了珊瑚微生物组在维持健康的元素中的作用,通过提供营养,支持生长和发育,保护病原体以及缓解环境压力源。我们探讨了珊瑚微生物组工程的概念,即对珊瑚微生物组的精确和受控操纵,以帮助和增强不断变化的海洋中的珊瑚弹性和耐受性。尽管珊瑚微型工程显然处于起步阶段,但最近的一些突破表明,这种工程是恢复和保存这些有价值的生态系统的有效工具。为了协助确定未来的研究目标,我们审查了微生物组工程的共同原理及其在提高人类健康和农业生产率方面的应用,使珊瑚微生物组工程在不远的未来中可以提高的位置。最后,我们结束时讨论了研究人员和从业人员在珊瑚礁中应用微生物组工程方面面临的挑战,并为将来的工作提供了建议。2022作者。由Elsevier Ltd代表中国工程学院和高等教育出版社有限公司出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
在亚临床动脉粥样硬化和代谢性疾病中,已经报道了使用改变的免疫球蛋白G(IgG)N-聚糖模式作为炎症公制,这两者都是心血管健康的重要危险因素。然而,心血管疾病(CVD)的风险地层(CVDS)的IgG N-糖基化利润率的可用能力仍然未知。这项研究旨在开发一种心血管老化指数,用于使用IgG N-聚糖跟踪心血管风险。这项横断面调查招募了1465名来自Busselton健康和衰老研究的40-70岁的人。我们逐步选择了使用机器学习中的特征选择方法(递归功能消除和惩罚性回归算法)的变化N-聚糖的交汇处,并开发了IgG N-糖基化心血管年龄(GlyCage)索引,以反射来自日历年龄的偏差,从而使偏差归因于可产生的偏差。与糖基指数的最强贡献者是偶联糖基化的N-聚糖,其成分为N-乙酰基葡萄糖胺(GlCNAC)(GllcNAC)(Glycan Peak 6(GP6),FA2B,FA2B,)和digalactosy complactosy lated N-糖,含有双分裂的glcnac(glcnac)GLCNAC(GP13)(GP13,A2BG2)。A one-unit increase of GlyCage was significantly associated with a higher Framingham ten-year cardiovascular risk (odds ratio (OR), 1.09; 95% confidence interval (95% CI): 1.05–1.13) and probability of CVDs (OR, 1.07; 95% CI: 1.01–1.13) independent of calendar age.患有过度糖的人(超过3个日历年龄> 3岁)的心血管风险和CVD的概率增加,调整后的ORS分别为2.22(95%CI:1.41–3.53)和2.71(95%CI:1.25-6.41)。2022作者。曲线(AUC)区分高心脏风险的区域(AUC)值为0.73和0.65,对于日历年龄,在日历年龄为0.65和0.63。因此,本研究中开发的糖指数可用于使用IgG N-糖基化pro纤维来跟踪心血管健康。糖基与日历年龄之间的距离独立表明心血管风险,表明IgG N-糖基化在CVD的发病机理中起作用。观察到的关联的概括和高糖指数的预测能力需要其他人群的外部和纵向验证。由Elsevier Ltd代表中国工程学院和高等教育出版社有限公司出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
© 高等教育出版社 2023 当今世界正面临许多危机,包括气候变化、环境污染、资源稀缺和资源消耗猖獗。为了解决这些问题,有必要寻求低碳、环保和成本效益高的解决方案。解决这些挑战的一个有希望的途径是使用生物质基材料,这种材料具有许多独特的优势,包括可再生性、可生物降解性和丰富性。先进的生物质材料已经在各种应用中尝试用于解决全球问题,例如能源危机、环境污染和资源短缺。在本期特刊中,我们的目标是提高研究人员对生物质基材料领域的关注和兴趣,并促进先进生物质材料科学和技术的发展。这些先进的生物质基材料是传统石化材料的可持续替代品。通过促进对先进生物质基材料的研究,本期特刊旨在推进跨学科研究的前沿,并为更可持续的未来铺平道路。本期特刊有助于我们了解基于纤维素、木质素和其他生物质的先进功能材料。为了更好地说明针对性,将出版两期(第17卷第7期和第8期)。研究论文展示了这些材料的合成、改性、性能、功能以及在能源、环境和其他新兴领域的潜在应用,强调了它们在应对紧迫的全球挑战中的重要性。综述探讨了纤维素在低介电常数绝缘纸和锂离子电池中的作用,以及离子液体在生物质基材料合成和应用中的潜在优势。在能源存储和转换领域,先进的生物质材料在解决材料和设备层面的挑战方面发挥了关键作用。纤维素基聚合物电解质复合材料是一种能很好地保持形状的材料。当与纳米碳材料结合时,它们表现出良好的封装性能和更高的热能存储能力。通过烷基链桥接将酚羟基引入木质素磺酸盐(LS),再将改性后的LS掺杂到PEDOT中,可以增强PEDOT的电子传输能力。采用磷酸盐辅助水热法制备的木质素多孔碳可作为超级电容器电极,具有较高的比电容和良好的循环性能。采用一步“浸渍聚合”法制备了聚吡咯(PPy)与纤维素纳米纤维(CNF)的复合薄膜电极,纤维素微纤维和纳米纤维在锂离子电池中的应用,综述了纤维素微纤维和纳米纤维在高能量密度电池中的应用,并介绍了用于高能量密度电池的高质量负载纸电极的新发展趋势和最新进展与方法。