背景:顶花基因1(TFL1)属于磷脂酰乙醇胺结合蛋白(PEBP)家族,在高等植物花分生组织身份决定及开花时间调控中起重要作用。结果:在油菜基因组中鉴定出5个BnaTFL1基因拷贝。系统发育分析表明,5个BnaTFL1基因拷贝与祖先种芜菁和甘蓝中相应的同源拷贝聚集在一起。BnaTFL1的表达局限于花芽、花、种子、角果和茎组织中,并表现出不同的表达谱。利用CRISPR/Cas9技术产生的BnaC03.TFL1敲除突变体表现出早花表型,而其他基因拷贝的敲除突变体开花时间与野生型相似。此外,BnaTFL1基因单个拷贝的敲除突变体表现出了植株结构的改变,BnaTFL1突变体的株高、分枝起始高度、分枝数、角果数、每角果种子数和主花序上的角果数均显著减少。
与人类相比,植物可以合成种类繁多的化学化合物,包括酚酸、黄酮类化合物、芪类化合物、木脂素、萜类化合物、生物碱和许多其他类型的次级代谢物,这些化合物已被证明具有重要的生物活性并对人类健康产生影响。经过广泛而持续的努力,一些植物化学物质,如长春新碱、长春花碱和紫杉醇,如今已被批准作为抗癌药物,而其他几种植物化学物质正在临床试验中。然而,尽管取得了显著的成功,但在某些地方,植物衍生产品的抗癌作用研究一直与替代方法混杂在一起,因此被认为是不可信的,尤其是在传统医学在历史上并不那么普遍的地区,如几个亚洲国家。因此,只有大约 10% 的高等植物被探索过其成分的潜在治疗效果。此外,由于次生代谢产物的功能之一包括保护植物免受各种环境压力的影响,这些植物化学物质的含量和组成可能因不同的区域生境而存在重大差异。因此,必须改变将植物产品视为替代药物的刻板态度,以识别新型抗癌药物的新先导分子。植物可能仍然含有一系列重要的药学上有趣但仍未鉴定的化合物。
Jamsheer K. 博士于 2017 年获得新德里国家植物基因组研究所的博士学位,研究领域为植物细胞信号传导和发育。他曾在法国斯特拉斯堡植物分子生物学研究所担任 EMBO 短期研究员,并在新德里国家植物基因组研究所担任研究助理,接受博士后培训。他研究植物营养和压力感知机制以及信号通路。2018 年,Jamsheer 博士获得印度政府颁发的著名 DST- INSPIRE 教职奖学金,并加入北方邦阿米蒂大学。他曾获得多项重要的国家和国际奖项、奖学金和旅行补助金,如 2020 年 INSA 青年科学家奖章、EMBO 短期奖学金、EMBO 旅行补助金、NIPGR-最佳论文奖等。Jamsheer 博士的主要研究重点是了解真核生物营养和应激途径所涉及的基本细胞信号传导机制。这些信息将用于使用基因组编辑和传统基因工程工具对单细胞真核生物和高等植物进行工程改造,使其具有理想的性状。
基因编辑工具,例如锌指、TALEN 和 CRISPR-Cas,为整个生命之树的植物遗传改良开辟了新领域。在真核生物中,基因组编辑主要通过两种 DNA 修复途径进行:非同源末端连接 (NHEJ) 和同源重组 (HR)。NHEJ 是高等植物的主要机制,但它不可预测,并且经常导致不良突变、移码插入和缺失。通过 HR 进行的同源定向修复 (HDR) 通常是遗传工程师首选的编辑方法。HR 介导的基因编辑可以通过整合供体模板提供的序列来实现无错误编辑。然而,植物中天然 HR 的频率低是实现高效植物基因组工程的障碍。本综述总结了为增加植物细胞中 HDR 频率而实施的各种策略。这些策略包括针对双链 DNA 断裂的方法、优化供体序列、改变植物 DNA 修复机制以及影响植物 HR 频率的环境因素。通过使用和进一步完善这些方法,基于 HR 的基因编辑可能有一天会在植物中变得很常见,就像在其他系统中一样。
摘要:植物在整个发育期都会承受非生物胁迫。非生物应力包括干旱,盐,热,冷,重金属,营养元素和氧化应激。改善植物对各种环境压力的反应对于植物的生存和实用性至关重要。WRKY转录因子具有特殊的结构(WRKY结构域),这使得WRKY转录因子具有不同的转录调节函数。WRKY转录因子不仅可以通过调节植物激素信号通路来调节非生物应激反应以及植物的生长和发育,而且还可以通过与W-Box [Tgacca/Tgacct]结合在其靶基因的启动子中通过与W-Box [TGACCA/TGACCT]结合来促进或抑制下游基因的表达。此外,WRKY转录因子不仅与其他转录因子家族相互作用,以调节植物防御对非生物胁迫的反应,而且还通过识别和与W-box的结合来自我调节,以调节其对非生物胁迫的防御反应。然而,近年来,关于高等植物中WRKY转录因子的调节作用的研究评论稀缺。在这篇综述中,我们着重于WRKY转录因子的结构和分类,以及鉴定其下游目标基因和参与对非生物压力的反应的分子机制,这可以提高植物在非生物压力下的耐受能力,我们还期待着未来的研究指导,并提供了对属性的影响,并提供了属性的影响。
[1] Nam Sh,Lee J,A YJ。Euglena物种作为土壤生态毒性评估的生物指导者的潜力。Comp Biochem Physiol C Toxicol Pharmacol,2023,267:109586 [2] Proctor MS,Sutherland GA,Canniffe DP等。(杆菌)叶绿素生物合成的末端酶。r Soc Open Sci,2022,9:211903 [3] Solymosi K,Mysliwa-Kurdziel B.叶绿素及其在食品工业和医学中使用的衍生物。Mini Rev Med Chem,2017,17:1194-222 [4] Martins T,Barros AN,Rosa E等。 通过叶绿素和叶绿素丰富的农业食品增强健康益处:全面评论。 分子,2023,28:5344 [5] Sun D,Wu S,Li X等。 衍生自微藻的叶绿素的结构,功能和潜在药物作用。 Mar Drugs,2024,22:65 [6] Chen M,Schliep M,Willows Rd等。 红移的叶绿素。 Science,2010,329:1318-9 [7] Chen M.叶绿素修饰及其在氧光合物中的光谱扩展。 Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。 光化学超出了含有叶绿素F的光系统的红色极限。 Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。 Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。 修饰的四吡咯的生物合成 - 生命的颜料。 J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。 第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Mini Rev Med Chem,2017,17:1194-222 [4] Martins T,Barros AN,Rosa E等。通过叶绿素和叶绿素丰富的农业食品增强健康益处:全面评论。分子,2023,28:5344 [5] Sun D,Wu S,Li X等。衍生自微藻的叶绿素的结构,功能和潜在药物作用。Mar Drugs,2024,22:65 [6] Chen M,Schliep M,Willows Rd等。红移的叶绿素。Science,2010,329:1318-9 [7] Chen M.叶绿素修饰及其在氧光合物中的光谱扩展。Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。 光化学超出了含有叶绿素F的光系统的红色极限。 Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。 Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。 修饰的四吡咯的生物合成 - 生命的颜料。 J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。 第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。光化学超出了含有叶绿素F的光系统的红色极限。Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。修饰的四吡咯的生物合成 - 生命的颜料。J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Chlamydomonas Sourcebook(第三版)。剑桥:学术出版社,2023:691-731 [12] Tanaka R,Kobayashi K,Masuda T.拟南芥的Tetrapyrole代谢。拟南芥书,2011,9:145-85 [13] Brzezowski P,Richter AS,Grimm B.植物和藻类中四吡咯生物合成的调节和功能。Biochim Biophys Acta,2015年,1847年:968-85 [14] Wang P,JI S,GrimmB。植物四吡咯生物合成中代谢检查点的翻译后调节。J Exp Bot,2022,73:4624-36 [15] Zhao A,Fang Y,Chen X等。拟南芥谷氨酰基-TRNA还原酶及其刺激蛋白中的晶体结构。Proc Natl Acad Sci u S A,2014,111:6630-5 [16] Fang Y,Zhao S,Zhang F等。拟南芥谷氨酰基-TRNA还原酶(Glutr)形成带有流感和谷物结合蛋白的三元复合物。SCI REP,2016,6:19756 [17] Zhang S,Heyes DJ,Feng L等。 酶叶绿素生物合成中酶促光催化的结构基础。 自然,2019,574:722-5 [18] Dong CS,Zhang WL,Wang Q等。 的晶体结构SCI REP,2016,6:19756 [17] Zhang S,Heyes DJ,Feng L等。酶叶绿素生物合成中酶促光催化的结构基础。自然,2019,574:722-5 [18] Dong CS,Zhang WL,Wang Q等。
生物学 生物世界的多样性:生物世界:生物世界的多样性,分类类别,生物学分类:界(原核生物界、原生生物界、真菌界、植物界和动物界),病毒、类病毒和地衣,植物界:藻类、苔藓植物、蕨类植物、裸子植物、被子植物,动物界:动物分类的基础和动物分类植物和动物的结构组织:开花植物的形态:根、茎、叶、花序、花、果实、种子,典型的开花植物的半技术描述,一些重要科的描述,开花植物的解剖学:组织系统,双子叶植物和单子叶植物的解剖学动物的结构组织:器官和器官系统,两栖动物 - 青蛙细胞:结构和功能:细胞:生命:细胞、细胞理论、细胞概述、原核细胞、真核细胞 生物分子:生物体化学成分分析、初级和次级代谢物、生物大分子、蛋白质、多糖、核酸、蛋白质结构、酶 细胞周期和细胞分裂:细胞周期、有丝分裂和减数分裂及其意义 植物生理学:高等植物的光合作用:光合作用、早期实验、光合作用的位置、参与光合作用的色素、光反应、电子传递、ATP 和 NADPH 的合成和利用、C4 途径、光呼吸、影响光合作用的因素 植物的呼吸作用:植物呼吸吗?糖酵解、发酵、有氧呼吸、呼吸平衡表、克雷布斯/柠檬酸循环、呼吸商植物生长和发育:生长、分化、去分化和再分化、发育、植物生长调节剂人体生理学:呼吸和气体交换:呼吸器官、呼吸机制、气体交换、气体运输、呼吸调节、呼吸系统疾病体液和循环:组织液-血液、淋巴、循环途径、双循环、心脏活动调节、循环系统疾病排泄产物及其消除:人体排泄系统、尿液形成、小管功能、滤液浓缩机制、肾功能调节、排尿、其他器官在排泄中的作用、排泄系统疾病
该地区的气候各不相同,从热带到高山,有利于存在包括野生和栽培物种在内的各种植物物种。因此,该地区被指定为生物多样性的“热点”。,尽管该地区仅占印度地理区域的7.7%,但占国家森林覆盖范围的21.67%,50%(8000种)开花植物,39%(7,000种植物种类)高等植物和37%(300种(300种)印度野生食用植物。此外,该地区被认为是稻米,普通话,香蕉,黄瓜,盐盐,印度豆,姜,姜黄,大豆蔻,塔罗,颜色,山签,竹,竹子,兰花,莉莉和次要多样性中心的多样性中心,玉米,辣椒,辣椒,chow-chow-chow-chow是由当地部落种植的,在确保当地居民的营养安全方面发挥了重要作用。该地区也以卓越的农产品质量而闻名。除作物物种外,该地区还富含牲畜的各种土地,例如Siri(Sikkim和West Bengal),Lakhimi(Assam),Thutho(Nagaland),Masilum(Meghalaya)cattles的品种;吉大港(Meghalaya&Tripura),Miri和Daothigir(Assam),Kaunayen(Manipur)鸡肉,鸡肉,Sumi-Ne(Nagaland),Assam Hill(Assam&Meghalaya),Niang Megha(Meghalaya)的山羊(Assam&Meghalaya) (Manipur)和Wak Chambil(Meghalaya)的猪品种,由于其独特的特征而被注册。已经为几种农作物/商品提供了地理迹象(GI)标签,例如,Joha Rice,Boka Chaul,Kaji Nemu,Tezpur Litchi和Assam的Karbi Ginger; Arunachal Pradesh的Adi Kekir Ginger和Khaw Tai(Khamti Rice);黑米(Chakhao),Tamenglong Orange,Sirarakhong的Hathei Chilli,Kachai Lemon和Manipur的Siroy Lily; Meghalaya的Memong Narang和Khasi Mandarin;锡金的大豆蔻和达勒辣椒;纳加兰的国王寒冷,树番茄和甜味黄瓜;鸟类辣椒的辣椒;和Tripura的皇后菠萝。该地区还以鱼类中的各种遗传资源而闻名,包括197个潜在食品,体育和水族馆鱼类,属于74个属的27个家庭和该地区的33个家庭。
背景:CRISPR/Cas 和 TALEN 技术的进步激发了人们对植物基因编辑机会的兴奋。CRISPR/Cas 被广泛用于通过诱导靶向双链断裂 (DSB) 来敲除或修改基因,而双链断裂主要通过易出错的非同源末端连接或微同源介导的末端连接进行修复,从而导致可能改变或消除基因功能的突变。尽管此类突变是随机的,但它们发生的频率足以使有用的突变能够通过筛选定期识别。相比之下,用替代等位基因或具有特定特征修饰的拷贝替换整个基因的基因敲入目前还不常见。通过同源定向修复进行基因替换(或基因靶向)在高等植物中发生的频率极低,使得筛选有用事件变得不可行。通过抑制非同源末端连接和/或刺激同源重组 (HR) 可以增加同源定向修复。在这里,我们通过评估多种异源重组酶表达对烟草植物染色体内同源重组 (ICR) 的影响,为提高基因置换效率铺平了道路。结果:我们在含有高度敏感的 β -葡糖醛酸酶 (GUS) 型 ICR 底物的烟草转基因系中以不同的组合表达了几种细菌和人类重组酶。使用病毒 2A 翻译重编码系统实现了多种重组酶的协调同时表达。我们发现大多数重组酶在花粉中显著增加了 ICR,其中 HR 将由减数分裂期间发生的程序化 DSB 促进。DMC1 表达在初级转化体中产生了对 ICR 的最大刺激,其中一种植物的 ICR 频率增加了 1000 倍。对纯合 T2 植物系中的 ICR 的评估表明,ICR 增加了 2 倍到 380 倍,具体取决于表达的重组酶。相比之下,营养组织中的 ICR 仅适度增加,异源重组酶的组成性表达也降低了植物的育性。结论:异源重组酶的表达可以大大增加植物生殖组织中 HR 的频率。将此类重组酶表达与使用 CRISPR/Cas9 诱导 DSB 相结合可能是从根本上提高植物基因替换效率的途径。
生物的生物学多样性:生命世界什么是生物?生物多样性;需要分类;生命的三个领域;物种和分类层次结构的概念;二项式命名法。生物分类五个王国分类; Monera,Protista和Fungi分为主要群体的显着特征和分类;地衣,病毒和病毒。植物王国的显着特征和植物分为主要群体 - 藻类,苔藓植物,pteridophyta和Gymnospermae。(显着和区分特征以及每个类别的一些示例)。动物界的显着特征和动物的分类,直接到门水平的非配合物以及弦弦到班级水平(显着特征和区分每个类别示例的特征)。(不应显示活动物或标本。)动物和植物中的结构组织:花序和花朵的开花植物形态的形态,01家族的描述:茄科或莉莉亚科(与实践课程的相关实验一起处理)。动物组织中的结构组织。细胞:结构和功能细胞 - 生命细胞理论和细胞的单位,作为生命的基本单位,原核和真核细胞的结构;植物细胞和动物细胞;细胞包膜;细胞膜,细胞壁;细胞细胞器 - 结构和功能;内膜系统,内质网,高尔基体,溶酶体,液泡,线粒体,核糖体,质体,微生物;细胞骨架,纤毛,鞭毛,中心菌(超微结构和功能);核。生物分子活细胞的化学成分:蛋白质,碳水化合物,脂质,核酸的生物分子,结构和功能;酶类型,性质,酶作用。单元格:结构和功能;细胞周期和细胞分裂细胞周期,有丝分裂,减数分裂及其意义。植物生理学的光合作用在高等植物的光合作用中,作为自养营养的一种手段;光合作用的位点,参与光合作用的颜料(基本思想);光合作用的光化学和生物合成阶段;循环和非循环的辐射磷酸化;化学含量假设;光振动; C3和C4途径;影响光合作用的因素。植物中气体交换的呼吸;细胞呼吸 - 糖酵解,发酵(厌氧),TCA循环和电子传输系统(有氧);能量关系 - 产生的ATP分子的数量;两性途径;呼吸商。植物 - 生长和发育生长调节剂 - 生长素,吉布素,细胞分裂素,乙烯,ABA。人类生理学呼吸和交换动物中气体的气体呼吸器官(仅回想);人类的呼吸系统;呼吸机制及其在人类中的调节 - 气体的交换,气体的运输和呼吸的调节,呼吸体积;与呼吸有关的疾病 - 哮喘,肺气肿,职业呼吸系统疾病。体液和血液的循环组成,血液组,血液凝结;淋巴的组成及其功能;人类循环系统 - 人心脏和血管的结构;心脏周期,心输出量,心电图;双循环;心脏活动的调节;