由于害虫引起的植物疾病每年造成农作物田地巨大损失。为控制植物有害生物,正在使用农药。镰刀菌是由植物病原体氧气引起的。由于该病毒引起的这种疾病,有100多种受影响。真菌每年也会影响洋葱植物作物的产量。它将增加洋葱产量的成本,并且对靶向害虫以外的环境和生物生物也很危险。当前正在使用许多微生物,例如真菌,细菌和线虫来控制不同类型的农业生态系统的害虫。在当前的研究中,从从5种不同的(小麦,玉米,高粱,巴尔塞姆,菠菜)农作物收集的土壤样品中分离出25种不同的细菌。中,有11个分离株具有植物生长促进能力。各种生化,生理和形态学测试表明,在这11个细菌分离株中,有3个是革兰氏阳性杆菌,其中2个是革兰氏阴性杆菌,3个是革兰氏阳性球菌,2个是革兰氏杆菌,革兰氏阴性杆,1个革兰氏阳性杆。分离株进一步筛选其对洋葱植物病原体的拮抗活性,从而导致镰刀菌病。只有两个细菌分离株显示阳性结果,并抑制了植物真菌病原体的生长进行POT实验。当前研究的目的是对土壤细菌的剥削来控制植物病毒,作为获得更好的作物产量的有效方法。
摘要:农业是最重要的活动之一,它生产对人类生存至关重要的农作物和食物。如今,农产品和农作物不仅用于满足当地需求,而且全球化使我们能够将农产品出口到其他国家并从其他国家进口。印度是一个农业国家,很大程度上依赖其农业活动。预测作物产量和单产是一项必要的活动,它使农民能够估算储存量、优化资源、提高效率和降低成本。然而,农民通常根据经验和估计,根据地区、土壤、天气条件和作物本身来预测作物,这可能不太准确,尤其是在当今不断变化和不可预测的气候条件下。为了解决这个问题,我们的目标是使用机器学习 (ML) 模型来预测各种作物(如大米、高粱、棉花、甘蔗和拉比)的产量和单产。我们用天气、土壤和作物数据训练这些模型,以预测这些作物未来的产量和单产。我们汇编了影响印度特定邦农作物生产和产量的属性数据集,并对各种 ML 回归模型在预测农作物生产和产量方面的表现进行了全面研究。结果表明,在所考察的模型中,Extra Trees 回归器取得了最高的性能。它的 R 平方得分为 0.9615,平均绝对误差 (MAE) 和均方根误差 (RMSE) 最低,分别为 21.06 和 33.99。紧随其后的是随机森林回归器和 LGBM 回归器,它们的 R 平方得分分别为 0.9437 和 0.9398。此外,进一步的分析表明,基于树的模型的 R 平方得分为 0.9353,与线性和基于邻居的模型相比表现出更好的性能,后两者的 R 平方得分分别为 0.8568 和 0.9002。
摘要:Burukutu和Pito是传统上生产和普遍消费的两种主要发酵酒精谷物饮料。知道传统的加工方法很容易受到污染,因此本文的目的是研究微生物危害,并使用适当的标准方法在尼日利亚定期消费burukutu和Pito的处理中的关键控制点。从这项研究中获得的数据表明,在加工和皮托的加工过程中,微生物污染是通过铣削操作,加工水,卫生不良和卫生条件引起的。细菌和真菌种群在两种饮料中都相对相似,尽管在burukutu中略高于皮托。对于大肠菌数计数也观察到了相似的趋势,但是,所获得的值高于发酵食品和相关产品的Alimentarius标准限制。pH值在Burukutu的3.40和3.75之间变化,Pito的3.42和3.78在3.42和3.78之间,而总可滴定酸(TTA)分别为1.22至1.22至1.94 g/ml和1.22至1.22至1.94 g/ml。大肠菌群,金黄色葡萄球菌,蜡状芽孢杆菌,网络链球菌Fabianii,念珠菌正质病,念珠菌parapapapilosis,念珠菌性haemulonis是在处理这些饮料的过程中鉴定出的病原体。发现这些病原体的公共卫生重要性意味着对加工者进行个人卫生,环境卫生,确定的危害和对关键控制点的适当监测以及潜在使用起动培养物进行发酵阶段的培训。这种培训是确保食品安全并因此增强消费者可接受性的可行策略。doi:https://dx.doi.org/10.4314/jasem.v28i10.29许可证:CC-BY-4.0开放访问政策:Jasem发表的所有文章均为开放式访问文章,并且可以免费下载,复制,重新分发,repost,repost,repost,compost,翻译,翻译和阅读。版权策略:©2024。作者保留了版权和授予Jasem首次出版的权利。只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将此文章列为:Areh,O。J; Oyetibo,G; Adebusoye,S。A; Oguntoyinbo,F。A.(2024)。微生物危害和关键控制点识别在处理尼日利亚北部经常食用的两种传统发酵酒精谷物饮料中。J. Appl。SCI。 环境。 管理。 28(10)3191-3202日期:收到:2024年7月7日;修订:2024年8月15日;接受:2024年8月19日出版:2024年10月5日关键词:酒精谷物饮料;发酵;污染;安全; Public Health Pito和Burukutu是两种传统上生产的两种重要的酒精谷物饮料,这些饮料在西非的某些地区普遍消费,包括加纳,尼日利亚,布基纳法索和贝宁共和国(Kolawole等,2007; Oguntoyinbo and Franz and Franz and Franz,2016)。 它主要用作当地娱乐饮料(高粱啤酒),而不完全发酵的产品被用作婴儿和儿童食品SCI。环境。管理。28(10)3191-3202日期:收到:2024年7月7日;修订:2024年8月15日;接受:2024年8月19日出版:2024年10月5日关键词:酒精谷物饮料;发酵;污染;安全; Public Health Pito和Burukutu是两种传统上生产的两种重要的酒精谷物饮料,这些饮料在西非的某些地区普遍消费,包括加纳,尼日利亚,布基纳法索和贝宁共和国(Kolawole等,2007; Oguntoyinbo and Franz and Franz and Franz,2016)。它主要用作当地娱乐饮料(高粱啤酒),而不完全发酵的产品被用作婴儿和儿童食品
乙酰乳酸合酶(ALS)或乙酰羟基酸合酶(AHAS)是分支链必需氨基酸丝线,Leucine,Leucine和Isopoilucine的生物合成途径中的第一个酶(1,2)。来自五个化学组的磺酰脲(SU),咪唑酮(IMI),三唑吡吡咪定(TP),嘧啶基 - 硫代苯甲酸盐(PTB)和磺酰基 - 氨基氨基苯甲酸 - 氨基苯甲基 - 苯甲酸 - 苯二唑诺酮(SCT)抑制Als Amniv的序列化的除草剂。 乙酰乳酸合酶抑制剂除草剂自1982年首次引入(3)以来,已广泛用于世界农业。 因此,许多对ALS抑制剂除草剂具有抗性的农作物已被商业化,例如耐药玉米,低芥酸菜籽,小麦,大米和葵花籽,以及抗性的大豆,向日葵和高粱(4)。 但是,耐药的杂草很快出现了,即 在1987年在美国确定的抗性刺芽生菜(5)。 从那时起,由于ALS基因中的点突变,许多物种在全球范围内进化了对这些除草剂的抗性,ALS基因中的点突变产生了ALS蛋白中的氨基酸取代(AAS),因此对除草剂的敏感性降低,但其固有的生物学功能(6)。 研究人员报道了至少29个AA,在8个ALS肽位置赋予除草剂耐药性(A 122,P 197,A 205,D 376,R 377,R 377,W 574,W 574,S 653和S 653和G 654)在60多种物种中(氨基酸编号对应于Als Als Als in Alibiana in Abiriana thaliana thaliana thaliana thaliana thaliana thaliana in Als Als)。 基因遗传力的研究(7-9)表明,与ALS相关的除草剂耐药性由具有可变程度的优势程度的核基因控制。除草剂。乙酰乳酸合酶抑制剂除草剂自1982年首次引入(3)以来,已广泛用于世界农业。因此,许多对ALS抑制剂除草剂具有抗性的农作物已被商业化,例如耐药玉米,低芥酸菜籽,小麦,大米和葵花籽,以及抗性的大豆,向日葵和高粱(4)。但是,耐药的杂草很快出现了,即在1987年在美国确定的抗性刺芽生菜(5)。从那时起,由于ALS基因中的点突变,许多物种在全球范围内进化了对这些除草剂的抗性,ALS基因中的点突变产生了ALS蛋白中的氨基酸取代(AAS),因此对除草剂的敏感性降低,但其固有的生物学功能(6)。研究人员报道了至少29个AA,在8个ALS肽位置赋予除草剂耐药性(A 122,P 197,A 205,D 376,R 377,R 377,W 574,W 574,S 653和S 653和G 654)在60多种物种中(氨基酸编号对应于Als Als Als in Alibiana in Abiriana thaliana thaliana thaliana thaliana thaliana thaliana in Als Als)。基因遗传力的研究(7-9)表明,与ALS相关的除草剂耐药性由具有可变程度的优势程度的核基因控制。网站http://www.weedscience.org呈现了根据每个AAS对ALS抑制剂获得的抗性除草剂杂草获得的阻力模式的更新记录[1]。
由于气候变化而导致的高热量,干旱和洪水的增加将导致对撒哈拉以南非洲千万人口生计至关重要的农作物产量下降。开发并广泛采用气候富裕的农作物品种将减轻数十亿美元的农业生产损失。然而,农民并没有立即对气候富裕的作物特征进行重视,农民只能在经历严重的气候影响后才信任这些特征,从而限制了创新者收取更高价格的能力。,如果成功开发和分发耐热量的主食农作物可能会产生超过24美元的经济利益,那么每花费1美元,他们就会向创新者支付一项提前的市场承诺。我们确定撒哈拉以南非洲的农作物,其富含热弹性的社会回报很高,而作物品种创新市场却忽略了。我们通过将未来的气候预测与有关温度变化,价格,多样性发行和创新成本相关的农作物收益数据结合在一起来计算净社会回报。我们通过两个渠道对作物品种创新进行建模:传统的繁殖和先进技术,这些技术利用了CRISPR和RNA甲基化等最新的科学进步。我们的结果表明,增加农作物的热弹性具有巨大的经济利益(请参见表-1 -1)。我们通过减少29至40摄氏度对作物产量的高温的负面影响来对热弹性进行建模。玉米和高粱的热弹性改善提供了最大的好处。但是,花生和大豆的收益也很大,在先进的品种开发方案中,每种都产生了超过1亿美元的经济利益。
在世界谷物产量统计中,燕麦排在第六位,仅次于小麦、玉米、大米、大麦和高粱。在世界许多地方,燕麦不仅用作谷物,还用作饲料和草料,用作铺垫物、干草、半干草、青贮饲料和谷壳。燕麦作物的主要用途仍然是用作牲畜谷物饲料,平均占世界总使用量的 74% 左右。在印度,燕麦育种始于 20 世纪 80 年代,是印度西北部、中部和东部地区最重要的谷物饲料作物。作为饲料作物,燕麦具有优良的蛋白质质量、脂肪和矿物质含量。它是一种美味、多汁且营养丰富的作物。许多疾病会造成严重的直接损害,主要是饲料产量的降低。其中包括冠锈病、茎锈病和叶斑病等疾病。在超过 31 个野燕麦品种中,已从燕麦基因库中发现了多种抗冠锈病、秆锈病、白粉病、BYDY 等主要病害的抗性基因。人们正在广泛利用标记辅助选择 (MAS)、标记辅助回交 (MABC)、标记辅助基因聚合和标记辅助轮回选择 (MARS) 等多种育种策略将抗性基因渗入优良品种。随着新测序技术的进步和生物信息学的飞速发展,完整的燕麦基因组测序已不再遥不可及。燕麦基因组测序将为育种者开发大量基于序列的标记(如 SNP)铺平道路,这些标记将有助于通过利用连锁不平衡作图和基因组选择来识别抗病基因。
粮食不安全是非洲气候变化带来的最大风险之一,那里有90%至95%的非洲粮食生产是雨天,很大一部分人口已经面临慢性饥饿和营养不良。尽管有几项研究发现了在气候变化情景下未来农作物产量损失的有力证据,但农作物和地区之间存在广泛的差异以及大型建模不确定性。这种不足的很大一部分源于气候预测,因为气候模型可能在模拟未来的降水和温度变化方面有所不同,这可能导致未来的作物产生情况。这项工作研究了西非气候变化对西非玉米,小米和高粱作物产量的影响,使用耦合模型对比项目对比项目第五阶段(CMIP5)和新一代来自耦合模型模型库库对间项目的气候模型的预测(CMIP5)(CMIP6)(CMIP6)。我们使用模拟作物建模框架来模拟历史和未来的作物产量,并使用引导技术来评估CMIP5和CMIP6合奏之间作物生产力的预计变化。使用新一代气候模型CMIP6,我们发现CMIP5模拟所示的负作物产量预测大大降低,当大气CO 2浓度在作物模型中所考虑时,也大大增加了作物产量。这种结果突出了在评估该地区气候变化的影响以及最终用户预期适应策略的差异方面仍然存在的巨大不确定性。CMIP5和CMIP6模拟之间作物产量影响的这些差异主要是由于西非温度和沉淀的气候不同。到本世纪末,CMIP6预测在本世纪中叶和较小程度上都显着湿润和凉爽。
灌溉是非洲极为重要的部门,在大多数国家为GDP做出了巨大贡献,更重要的是,代表大多数大陆的主要就业来源,包括2022年撒哈拉以南的52%(国际劳工组织(国际劳工组织2024年)),同时也可以反对家庭食品不受欢迎。农业是最容易受到气候风险的部门,在气候条件不利的几年中,最低的农业生产比大陆几乎每个国家的粮食不安全感都在增加。气候变化正在破坏历史气候模式,可能在许多地方恶化生产率,并可能增加季节性降水的变化。降雨模式的变化可能会导致更长的干旱或更频繁和严重的洪水,除了增加不可预测性。更长的干旱会导致连续的低生产年份,也可能影响水力发电发电。洪水可以洗掉或淹没农作物,还可以洗掉道路和桥梁,破坏农民的市场联系。与气候变化相关的较高温度可以在温度已经达到或高于最佳温度的地方,通过对农作物生长和生物影响的直接影响,在那里种植的农作物的最佳温度,而有害生物和疾病可能会导致预先造成的虫害和疾病。,尽管有多种原因在某些地方,气候变化具有相当大的潜在有害影响,但气候变化可能是相对中立甚至是积极的。较高的温度还可以降低专用于农业的劳动生产率,降低牲畜(肉,牛奶和鸡蛋)的生产率,并增加牲畜死亡率和发病率。首先,在国家较凉爽的地区发生了许多农业活动,在这种情况下,温度升高可能会增加产量。第二,许多位置的降水可能会增加,在没有灌溉的地方可能会增强产量,并且历史上降雨量不足。最后,尽管该理论仍然在科学上引起争议,但许多科学家认为C3作物的产量(除C4作物以外的所有农作物:玉米,高粱,小米,Teff,甘蔗和某些草)都将从
将通用科学知识对特定于上下文的农民知识的抽象背景化是农民的创新过程中的必要步骤,并且可以使用农作物和农场模型来实现。这项工作探讨了基于农民对环境和实践的描述来模拟大量场景的可能性,以便将每个参与的农民讨论的讨论背景。它提出了一个新的框架,该框架由六个阶段分开的六个动作组成,即第一阶段 - 向农民的世界出发:(i)项目初始化; (ii)确定在农民背景下锚定的农艺问题; (iii)表征环境,管理选项和描述正在考虑的系统的指标;第二阶段 - 研究人员的世界:(iv)作物模型参数化; (v)将模型输出转换为农民支持的指标;和第三阶段 - 返回农民的世界:(vi)与农民探索情境化的管理选择。在此过程中创建了两个通信工具,一个包含模拟结果以供应讨论的结果,而第二个则是创建其记录的第二个通信工具。框架的有用性是用肥料和堆肥应用来探索土壤生育能力管理的,以高粱生产在苏德诺 - 撒哈利亚布尔基纳·菲萨(Sudano-Sahelian Brkina Faso)的小小的背景下。该框架与15名农民的应用提供了证据,证明了农民和农艺学家对通过更好的有机修正管理进行改善作物系统绩效的选择的理解。这种方法使农民能够识别并与模拟的方案相关,但强调了有关如何使作物模型输出适应特定情况的审讯。虽然在现场层面上与战术变化有关的问题应用,但该框架为农民(例如农场重新配置)探索更广泛的问题提供了机会。
价格:总体而言,受监控物品的价格表现出各种趋势。然而,摩加迪沙和索马里兰的食品和非食品物品的价格始终保持稳定。在摩加迪沙和索马里兰,当地谷物的价格保持不变,而由于获得的机会加强,赫希贝尔,蓬兰德兰和朱巴兰的价格下降了1%至8%,并增加了淡季收获的支持。相比之下,在运输中断和市场供应短缺的驱动下,加尔穆杜格和西南的玉米和红高粱价格上涨了2%至4%。进口食品价格,包括大米,小麦粉,意大利面,糖和植物油,由于足够的市场供应,大多数地区的大多数地区都稳定或略有下降。然而,盖德格格的大米,意大利面和糖的价格上涨了2-4%,而蓬特兰的糖价格上涨了2%。这些增加主要是由于运输困难引起的供应有限,并且持续冲突破坏了Galgaduud和Mudug地区的分布,骆驼牛奶的价格在Hirshabelle,Jubaland和Galmudug造成的牛奶供应和市场供应量下降了1-6%。相比之下,索马里兰,西南部和蓬特兰的牛奶价格分别上涨了3%,6%和9%。与此同时,山羊价格在加尔穆德(Galmudug)的价格上涨了6%,而西南,蓬兰(Puntland)和朱巴兰(Jubaland)的价格下降了2%至4%,归因于本月底出售的贸易盈余。所有州的工资劳动率几乎保持一致,除了西南,蓬兰和朱巴兰的略有变化1-3%。同样,在大多数州的柴油价格稳定,朱巴兰下降了7%,西南部的价格最小为1%。可用性:总体而言,市场充分库存以满足家庭需求。尽管如此,诸如Badhaadhe,Ceel Dheer,Iskushuban,Xarardheere,Ceel Barde,Hobyo和Jilib等特定市场继续面对蔬菜的完全不可用。各种:大多数市场仍然充满活力,提供广泛的商品品牌和数量,表现出弹性。然而,赫尔沙贝尔(Hirshabelle)遇到了零星的蔬菜短缺,尤其是在卡达尔(Cadale)等地区。