Lanxess是一家领先的专业化学公司,2023年销售额为67亿欧元。该公司目前在32个国家 /地区拥有约12,400名员工。Lanxess的核心业务是化学中间体,添加剂和消费者保护产品的开发,制造和营销。lanxess在道琼斯可持续性指数以及MSCI ESG和ISS ESG评级等方面取得了领先的地位,以及其对可持续性的承诺。前瞻性陈述本公司发行的陈述包含某些前瞻性陈述,包括公司的假设,意见,期望和观点,或者是从第三方来源引用的。各种已知和未知的风险,不确定性和其他因素可能会导致Lanxess AG的实际结果,财务状况,发展或绩效与此处表达或暗示的估计有重大不同。lanxess ag不能保证这种前瞻性陈述是没有错误的假设,也不承担对本演示文稿中表达的意见的未来准确性或预测发展的实际发生的责任。不应对本文所包含的任何信息,估计,目标和意见提出任何依赖,也不应依赖任何责任,并且对本文所包含的任何错误,遗漏或错误陈述所承担的任何责任,以及任何律师或任何律师的官员或任何律师的代表,或任何律师的代表。直接或间接地是由于本文档的使用。不应对本文所包含的任何信息,估计,目标和意见提出任何依赖,也不应依赖任何责任,并且对本文所包含的任何错误,遗漏或错误陈述所承担的任何责任,以及任何律师或任何律师的官员或任何律师的代表,或任何律师的代表。直接或间接地是由于本文档的使用。编辑的信息:所有Lanxess新闻发布及其随附的照片都可以在http://press.lanxess.com上找到。管理委员会和其他LANXESS图像材料的最新照片可在http://photos.lanxess.com上找到。您可以在http://lanxess.com/en/media/stories上找到有关Lanxess化学的更多信息。在X(Twitter),Facebook,LinkedIn和YouTube上关注我们:http://www.x.com/lanxess http://www.facebook.com/lanxess http://wwwwwwwwwwwwwwwwww.linkedin.com/compandin.com/-compandin comlec./company/lanxess http :/lanxess http:http:/
人们正在付出前所未有的努力来以循环经济的方式开发从生物资源中生产氢气,但这些措施的实施仍然很少。当今的挑战与价值链短缺、缺乏大规模生产基础设施、成本高以及当前解决方案效率低下有关。在此,我们报告了一种从纤维素纸浆中生产氢气的路线,该路线将生物质分馏和气化集成到生物精炼方法中。软木锯末经过甲酸有机溶剂处理以提取纤维素,然后进行蒸汽气化。生产出浓度为 56.3 vol% 且产量为 40 g H2/kg 纤维素的高纯度富氢合成气。焦炭气化具有生产游离焦油合成气的优势,从而降低了清洁成本并缓解了下游问题。对氢价值链上质量和能量平衡的全面评估显示,氢气生产的效率为 26.5%,能量需求为 111.1 kWh/kg H2。通过生物精炼方法优化溶剂回收和其他成分作为增值产品的价值提升将进一步改善工艺流程并促进其工业化发展。
RDG 使用其全资拥有的 Ant Hill 矿床的未选矿矿石生产出高纯度一水硫酸锰(一种电池矿物)。 Ant Hill 和 Sunday Hill 矿床距离黑德兰港 360 公里,位于西澳大利亚皮尔巴拉地区,是一个成熟且优质的采矿区。 市场分析师继续预测 HPMSM 的需求将大幅增长,从而可能导致供应短缺。 RDG 最初计划建造和运营一个能够生产 50,000 吨/年的 HPMSM(生产线 1)的 HPMSM 加工厂,如果需求支持,则能够将产能再增加 50,000 吨/年(生产线 2),使年总产能达到 100,000 吨/年。 聘请了 Carnac Project Delivery Services Pty Ltd,这是一家多学科工程和设计公司,该公司已交付了 SysCAD 生产规模模型(Train 1 – 50,000tpa)。 公司继续与有意从拟议的 Boodarie 加工厂供应 HPMSM 的汽车和电池制造商进行积极的讨论和反馈。 与传统所有者正在进行合作对话。 项目寿命长。 与联邦政府的关键矿产战略和国家电池战略以及西澳大利亚政府的未来电池行业战略具有巨大的协同作用。 正在与北澳大利亚基础设施基金 (NAIF 1) 进行积极的讨论。
DNA 质粒通常用于在基因组编辑中传递蛋白质和 RNA。然而,与缺乏此类细菌序列的微环 DNA (mcDNA) 相比,它们的细菌成分可能导致失活、细胞毒性和效率降低。现有的将质粒重组到专有细菌菌株内的 mcDNA 中的商业试剂盒劳动密集型,产生的结果不一致,并且通常产生低质量的 mcDNA。为了解决这个问题,我们开发了 Plasmid2MC,这是一种使用 Φ C31 重组的无细胞方法,可有效从常规制备的质粒中切除细菌骨架,而 mcDNA 纯化步骤可消化所有 DNA 杂质并降低内毒素水平。我们展示了 mcDNA 表达 CRISPR-dCas9 在 HEK293T 细胞和小鼠胚胎干细胞中的碱基编辑以及同源性独立的靶向插入 (HITI) 基因组编辑中的应用。该方法易于制备、效率高且 mcDNA 纯度高,使其成为需要细菌无骨架环状 DNA 的应用的宝贵替代方案。
木星HPMSM项目的主要好处之一是其在原材料采购和生产中的竞争优势。适用于HPMSM生产的Thiphi低级矿石的可用性,它具有明显的优势。这个矿石是Thiphi的30%级副产品,比大多数致力于HPMSM的竞争对手资源提供的锰等级更高,这使其成为HPMSM矿石供应的采矿活动,因此它是具有成本效益和高效的原材料来源。此外,木星的拟议生产过程有望达到高金属回收率,从而提高了HPMSM生产的总体效率和可持续性。随着电动汽车市场增强需求势头,预计中国以外的EV电池的预测需求将在未来8 - 10年内迅速增长。虽然电动电动电池阴极化学中的锰的采用率以及所需PCAM设施的计划开发率不断发展,但木星已经采用了保守的方法来范围内的研究业务案例,尤其是在HPMSM价格附近的生产量和假设周围。
Onitsuka,Shugo Advanced Energy Materials,国际碳中性能源研究所,京都大学Onitsuka,Shugo Advanced Energy Materials,国际碳中性能源研究所,京都大学
kbr开发了Pureli SM-一种独特的锂转换和精炼过程,可满足不断增长的电动汽车和固定能源存储系统的锂离子电池需求。Pureli能够将各种锂原料转换为碳酸锂或氢氧化锂一水合物。