作者:Alice Lunardon 1*、Weronika Patena 1*、Cole Pacini 1、Michelle Warren-Williams 1、Yuliya Zubak 1、Matthew Laudon 2、Carolyn Silflow 2、Paul Lefebvre 2、Martin Jonikas 1,3 1 普林斯顿大学,新泽西州,美国;2 明尼苏达大学,明尼苏达州,美国;3 霍华德休斯医学研究所 * 这些作者贡献相同。摘要。莱茵衣藻(以下简称衣藻)是研究光合作用、纤毛运动和其他细胞过程的有力模式生物 [1–4]。已映射的核随机插入突变体的 CLiP 文库 [5,6] 通过提供目标基因的突变体,加速了数百个实验室在这些领域的进展。然而,由于其对高置信度破坏等位基因的基因组覆盖率有限(46% 的核蛋白编码基因在外显子/内含子中具有 1+ 高置信度等位基因;12% 的基因在外显子/内含子中具有 3+ 等位基因),因此其价值受到限制。我们在此介绍 CLiP2(衣藻文库计划 2)文库,它大大扩展了可用的已映射高置信度插入突变体的数量。CLiP2 文库包含 71,700 个菌株,覆盖 79% 的核蛋白编码基因在外显子/内含子中具有 1+ 高置信度等位基因,以及 49% 的基因在外显子/内含子中具有 3+ 等位基因。社区可通过衣藻资源中心获取突变体。
拷贝数变异(CNV)是遗传变异的重要来源,它通过多种机制影响多种经济性状。此外,基因组扫描可以识别许多影响经济性状的数量性状位点(QTL),而全基因组关联研究(GWAS)可以定位与表型变异相关的遗传变异。在本研究中,我们开发了一种称为 GWAScore 的方法,该方法收集 GWAS 汇总数据以识别潜在候选基因,并将 CNV 整合到 QTL 和高置信度 GWAScore 区域以检测影响绵羊生长性状的关键 CNV 标记。我们得到了 197 个与候选 CNV 重叠的候选基因。一些关键基因(MYLK3、TTC29、HERC6、ABCG2、RUNX1 等)显示出比其他候选基因显著更高的 GWAScore 峰值。在本研究中,我们开发了 GWAScore 方法来挖掘候选基因作为绵羊分子育种标记的潜在价值。
aliannajmaren.com › 下载 PDF 作者:R Akita — 作者:R Akita 神经网络技术可用于执行船上多传感器相似和不相似数据的融合,以实现高置信度目标识别。8 页
缺乏置信度度量:最先进的深度学习方法的另一个特点是缺乏置信度度量。与基于贝叶斯的机器学习方法相比,大多数深度学习模型不提供模型不确定性的合理置信度度量。例如,在分类模型中,顶层(主要是 softmax 输出)中获得的概率向量通常被解释为模型置信度,参见 [26] 或 [35]。然而,像 softmax 这样的函数可能会导致对远离训练数据的点进行不合理的高置信度外推,从而提供一种虚假的安全感 [39]。因此,尝试将贝叶斯方法也引入 DNN 模型似乎是很自然的。由此产生的不确定性度量(或同义的置信度度量)依赖于给定数据权重的后验分布的近似值。作为此背景下的一种有前途的方法,变分技术(例如基于 Monte Carlo dropout [27])允许将这些贝叶斯概念转化为计算上可处理的算法。变分方法依赖于 Kullback-Leibler 散度来测量分布之间的差异。因此,所得的近似分布集中在单一模式周围,低估了该模式之外的不确定性。因此,对于给定实例的结果置信度度量仍然不令人满意,并且可能仍然存在误解高置信度的区域。
1 有关受标准约束的配电供应商的更多信息,请参阅修订后的 CIP 标准和定义的适用性部分。2 高影响和中等影响大型电力系统网络系统的内部网络安全监控,命令编号 887,182 FERC ¶ 61,021(2023 年)。2 同上,第 5 页。(第 887 号命令规定,任何新的或修改后的 CIP 可靠性标准都应:(1)满足负责实体在其 CIP 网络环境内制定网络流量基线的需要;(2)满足负责实体监控和检测 CIP 网络环境内未经授权的活动、连接、设备和软件的需要);以及(3)要求负责实体通过记录网络流量、维护有关网络流量的日志和其他收集的数据,并实施措施尽量减少攻击者从受感染设备中删除其策略、技术和程序证据的可能性,以高置信度识别异常活动。
使用Proteome Discoverer 3.2软件和Sequest®HT搜索算法进行数据分析。肽的修饰包括用于HELA的氨基甲基甲基化(C)的动态修饰,用于蛋白质混合物的羧甲基化(C),TMTPRO标签(N-末端,K)和MET氧化。FDR阈值在渗透剂节点中设置为1%,以识别肽和蛋白质鉴定的高置信度。在报告基因离子量化器节点中指定了11 ppm的记者离子峰积分耐受性,并使用新的集成的报告频道控制通道范围的范围范围范围进行了剥离和非剥离的控制通道,对剥离和非置换通道组的归一化进行了归一化。
在过去几十年中,OECD TG 已实现多样化,以适应不同的科学和监管挑战与需求。以体外测定为例,即基于培养皿中的细胞或组织而不是动物的测定。虽然最初只开发了一种 TG 来评估一种危害,即生物效应,但随着时间的推移,很明显 TG 需要不断发展以确保 (i) 在全球范围内可用 - 从而实现基于绩效的 TG (PB TG),(ii) 纳入新发展,允许不同技术针对相同的生物效应 - 称为基于关键事件的 TG (KE TG),以及最近的 (iii) 整合不同的(非动物)信息源,以高置信度得出危害预测结论,作为独立方法,无需专家判断 - 即所谓的定义方法 TG (DA TG)。
与 E 模型不同,竞争对手通常对其数据使用任意拟合,这种拟合不基于任何物理介电退化模型。图 4 中显示的功率拟合就是一个例子。这里绘制了图 3 中使用的相同数据,并使用功率曲线生成了最佳拟合趋势线,如图 4 所示。可以看出,使用这种方法可以预期显著延长使用寿命。包括已发布的电感耦合设备竞争对手数据(也是 10 ppm 级别)以供比较。竞争对手的数据是使用年为单位的时间尺度发布的;因此,在图 4 中,这些单位从年转换为秒以进行比较。TI 倾向于使用 TDDB E 模型,因为该模型比较保守,与任何其他模型或最佳数据拟合方法相比,该模型应该能够产生高置信度的预测。
摘要 基于 CRISPR/Cas9 的基因敲除 (KO) 能够精确扰动人类细胞中的靶基因功能,理想情况下可以通过分子组学读数以无偏的方式进行评估。通常,这需要漫长的分离 KO 亚克隆的过程。我们在此表明,无论使用哪种向导 RNA,KO 亚克隆在表型上都是异质的。我们提出了一种实验策略,该策略可避免亚克隆并实现细胞池中快速有效的基因沉默,该策略基于两个向导 RNA 的协同组合,这些向导 RNA 位于基因组接近处(40-300 bp)。我们的策略可实现更可预测的插入/缺失生成,具有较低的等位基因异质性,同时残留靶蛋白表达较低或不可检测,这由 MS3 质谱蛋白质组学确定。我们的方法适用于非分裂原代细胞,也可用于研究必需基因。它能够生成仅反映目标消融表型的高置信度组学数据。
使用三倍四极杆MS/MS进行定量分析的通用模式。这些系统的MRM功能提供了选择性和敏感的定量,其检测的最低限制,出色的可重复性和线性范围。使用MRM比率是一种具有高置信度的化合物的方法,其中包括量词和预选赛MRM过渡的比率。尽管MRM检测的选择性很高,但由于矩阵信号的干扰,总是存在假阳性发现的风险。使用QTRAP®功能,在增强的产品离子(EPI)实验中获取完整的扫描MS/MS数据,可以搜索质谱库,并可以显着提高识别信心。因此,三倍四极杆和QTRAP系统功能的组合允许在单个LC运行中使用MS/MS光谱进行量化和识别。