高能 X 射线探测器 (HEX-P) 是 NASA 提出的一项探测器级任务,它将高角分辨率与宽 X 射线带通相结合,为解决未来十年的重要天体物理问题提供了必要的能力飞跃。HEX-P 通过结合经验丰富的国际合作伙伴开发的技术实现了突破性的性能。为了实现科学目标,有效载荷由一套共线 X 射线望远镜组成,旨在覆盖 0.2-80 keV 带通。高能望远镜 (HET) 的有效带通为 2-80 keV,低能望远镜 (LET) 的有效带通为 0.2-20 keV。HEX-P 将发射到 L1 以实现高观测效率,带通和高观测效率的结合为广泛的科学服务于广大社区提供了强大的平台。基线任务为 5 年,其中 30% 的观测时间用于 PI 主导的项目,70% 用于一般观察 (GO) 项目。一般观察项目将与 PI 主导的项目一起执行。
nos。14/2020,日期为2020年4月8日,17/2020,日期为2020年4月13日,2020年5月5日,2020年5月5日,日期为2022年5月5日,2022年5月5日,最新日期为2022年12月28日,日期为11/2022,日期为2022年12月28日,印度(SEBI)的证券和交易委员会(SEBI)Sebi/ho/cfd/cmd2/cirp/p/2022/62,日期为2022年5月13日,以及在这方面发出的其他适用的通函,允许这些公司通过VC/OAVM进行AGM,直到2023年9月30日,直到2023年9月30日,在没有会员的情况下在普通场所的任何成员存在。根据该法案的适用规定以及MCA和SEBI发布的上述通告,该公司的第62届年度股东大会应通过VC / OAVM进行。中央存款服务(印度)有限公司(“ CDSL”)将提供通过远程电子投票,通过VC / OAVM参加AGM以及在年度股东大会期间进行电子投票的设施。
摘要:修剪和量化是加速LSTM(长短期内存)模型的两种常用方法。但是,传统的线性量化通常会遇到梯度消失的问题,而现有的修剪方法都有产生不希望的不规则稀疏性或大型索引开销的问题。为了减轻消失梯度的问题,这项工作提出了一种归一化的线性量化方法,该方法首先将操作数正常化,然后在局部混合最大范围内进行量化。为了克服不规则的稀疏性和大型索引开销的问题,这项工作采用了排列的块对角掩模矩阵来产生稀疏模型。由于稀疏模型高度规律,因此可以通过简单的计算获得非零权重的位置,从而避免了大型索引开销。基于由排列的块对角面胶质矩阵产生的稀疏LSTM模型,本文还提出了高能耐加速器的Permlstm,该材料全面利用了有关基质 - 载体乘积的重量,激活和产品的稀疏性,从而导致55.1%的动力减少。与先前报道的其他基于FPGA的LSTM加速器相比,与先前报道的其他基于FPGA的LSTM加速器相比,该加速器已在以150 MHz运行的ARRIA-10 FPGA上实现,并达到2.19×〜24.4×能量效率。
致谢.................................................................................................................................................................................................................................................................... iii 摘要.................................................................................................................................................................................................................................................................................... iv 已发布内容和贡献.................................................................................................................................................................................................................................................... iv 目录.................................................................................................................................................................................................................................................... .................................................................................................................................................................................. .................................................................................................................................................................................. .................................................................................................................................................................. .................................................................................................................................................................................. .................................................................................................................................................................................. . . . . . . . . . . . . . v 插图列表 . . . . . . . . . . . . . . . . . . . . . . . . . . viii 表格列表 . . . . . . . . . . . . . . . . . . . . . . . . . . xviii 第一章:简介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... .................................................................................................................................................10 第二章:调试用于时域实验的斯托克斯偏振射电干涉仪(SPRITE)....................................................................................12 2.1 简介.......................................................................................................................................................................12 2.2 仪器概述.......................................................................................................................................................13 2.3 观测策略.......................................................................................................................14 . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... .................................................................................................................................................................................66 4.5 结论....................................................................................................................................................................................67 第五章:利用 2018 年事件视界望远镜观测对 M87 超大质量黑洞进行成像.........................................................................................................69 5.1 引言...................................................................................................................................................................................................................69
目前正在开发中,三种不同类型的高能量激光器(HEL)正在开发中:化学激光器,固态激光器和自由电子激光器(FEL),每个激光器(FEL)使用不同的原理来产生激光束。最发达的概念,也是唯一要缩放到HEL功率水平的概念是化学激光器,其中能量释放来自化学反应。这是空降激光器(ABL)和美国陆军/以色列战术高能激光(THEL)中使用的激光类型。也是其他HEL演示器系统中采用的技术,例如新墨西哥州White Sands的Space-Space-Space-las-Im-Im-Im-Im-Im-In-Fraded高级化学激光(Miracl)高能量激光器。sec-ond类型的激光器,电力固态激光器,可以为传播,致死性和工程设计提供好处(较小,尺寸较小,尺寸较小,对冲击较不敏感)。第三个系统,自由电子激光器,也是电力,是最复杂的,但是唯一完全可供选择的激光概念。对于选定的应用,例如通过海平面的大气传播,此属性至关重要。尽管没有定义高能激光器的设定功率水平阈值,但通常认为千瓦时至兆瓦的平均力量可以从武器意义上定义高功率。HEL有可能解决从地面到太空的一系列应用和任务。基于地面的激光主要用于战术防空,这是Thel的作用,也是反卫星(ASAT)能力的作用。最近,激光
为了研究物质和宇宙的基本性质,高能量物理(HEP)实验通常在极端条件下运行,这些条件远远超出了综合电路的标准工作范围。这种极端环境的两个突出例子是在高发光山脉山相处经历的辐照水平以及在低温温度下的操作[1]。低温电子是一个广义的术语,该术语包括以低于标准工作极限(军事级电子设备的-55°C)运行的电路,一直至Millikelvin,如超导电电路而言。低温回路具有悠久的历史[2],并且在广泛的应用中发现了应用,例如红外局灶平面阵列,PET,量子科学。虽然CMOS电路在深度低温温度(<4.2K)下可靠地操作,但本文侧重于液氮(77K)的应用,并概述了有关大型HEP经验家的高温CMOS CMOS ICS的设计考虑因素,好处和独特的挑战。
A. Osterloh,Light Audio,G。Falci和念珠天然416,608(2002)L。Tagliaczo,Thiago。R.修订版b 78,024410(2008)
由于其在极高温度下的稳定性,石墨通常在核反应堆中用作中子的主持和反射器。石墨中发生的物理和结构变化源于由于快速中子的影响和相关的后坐力级联反应而导致的晶体格子损伤。因此,了解其辐射硬度(即其在中子和离子照射下的稳定性)对于安全使用石墨至关重要。高度定向的热解石墨(HOPG)是一种最高质量石墨的合成形式,其镶嵌物扩散小于一个度。其平面表面适合通过扫描隧道显微镜(STM)和原子力显微镜(AFM)分析。因此,它已在许多离子辐照实验中用于离子撞击位点的原子尺度研究[1]。
2017年12月在Argonne National Laboratoration举行了第一个关于高能量物理学(HEP)量子传感的粒子和田地APS分级的高级探测器(CPAD)的协调面板。来自大学和国家实验室的参与者是从量子信息科学(QIS),高能量物理学,原子质,分子和光学物理学,凝结物理学,核物理学和材料科学的相交领域汲取的。支持量子的科学技术已经取得了迅速的技术进步,并且在国家的利益和投资中不断增长。研讨会的目标是将各个社区聚集在一起,以调查途径,以整合这两个学科的专业知识,以加速科学进步的相互进步。
• Prime factorization (Shore's algorithm) : arxiv:9508027 • Database search (Grover's algorithm) : doi:10.1145/237814.237866 • Fast Fourier transform (qFFT) : arxiv:0201067 • Linear system solver (HHL) : arxiv:0811.3171 • …