] ] 高能推进剂(HD 1.1 级),输出比冲 > 252 s ] ] 高密度(> 1.79 g/cc)复合推进剂(HD 1.3 级),输出比冲 > 243 s ] ] 高燃速(> 40 mm/s,70 kgf/cm 2 )复合推进剂 ] ] 固体推进剂火箭发动机的压力铸造和固化技术 ] ] 分段芯轴技术,用于高体积装载药柱配置 ] ] 富含硝胺的高性能枪用推进剂(FC > 1000 J/g) ] ] TNT 当量 > 2.0 的温压高爆炸药组合物 ] ] 用于实现高密度和高精度炸药的热压和温等静压技术 ] ] 用于武器装备的炸药墨水技术 ] ]不敏感弹药 ] ] 基于爆炸的硬杀伤对抗措施
为了努力满足可持续发展原则所确定的要求,回收高能/爆炸物 (HEM) 的问题在过去十年中一直是关注的焦点。据估计,每年从军用仓库中回收的过期或退役爆破炸药、火药和火箭推进剂的数量达数千吨 [1-6]。2005 年,乌克兰的 HEM 数量估计为数十万吨 [7],而在阿尔巴尼亚,HEM 的数量如此之多,以至于其处置需要国际支持 [8]。在所有储存多余 HEM 的地方,都存在不受控制的激活和爆炸的危险。1950 年至 2013 年间,阿尔巴尼亚报告了 26 起意外爆炸 [9],原因是外部刺激(例如机械、热、电或化学 - 例如自催化分解)作用于 HEM [2, 3, 5, 10-27]。采矿业中使用的 HEM 成分不仅因高能工艺的风险而具有危险性,而且由于其刺激性、致癌性和/或毒性,还会对健康和生命造成危害 [28- 30]。HEM 爆炸产物对环境的影响也是一个严重的问题 [3-5、10、31-33]。
海得拉巴大学海得拉巴大学 - 500 046,印度UOH/ACRHEM/2020 - 2021/AKS/RA/RA 2020年10月12日ACRHEM(DRDO赞助项目)邀请了合格的候选人申请研究助理,纯粹是在该中心的DRDO项目的临时基础上。指定资格和专业化
十九世纪,不断发展的化学科学开始创造具有爆炸性质的分子种类。这些分子不仅含有可用作燃料的原子,即碳和氢,还含有与硝酸盐类似的硝基 (NO 2 )。硝基化合物有三种基本结构类型:含 C-NO 2 基团的硝基化合物、含 C-O-NO 2 的硝酸酯和含 N-NO 2 的硝胺。含有硝基的分子是良好的炸药候选者。硝基为燃烧提供必需的氧气,此外,氮原子转化为氮气 (N 2 ),从而增加了释放气体的体积。硝化分子的出现为具有更佳能量性质但能够产生爆炸的炸药开辟了道路。然而,在十九世纪初,研究人员将爆炸的概念应用于炸药分子,其中一些分子已为人所知近 100 年。最早被开发成军械填充物的是苦味酸(2,4,6-三硝基苯酚),要么是纯物质,要么与二硝基苯酚混合,以降低混合物的熔点,有助于熔融铸造 1)。与此同时,炸药 2,4,6-三硝基甲苯 (TNT) 也被开发出来,并被发现优于以苦味酸为基础的炸药。TNT 不仅作为纯填充物获得了巨大成功,而且在第一次世界大战结束时,作为与硝酸铵的混合物也获得了成功
该中心在高能材料的合成、配方、制造、建模、特性描述、性能优化和应用方面拥有深厚的专业知识。这些专业知识既在内部得到维护,也通过成熟的合作伙伴网络和初创企业生态系统得到维护,其中包括许多知名承包商,是 PERC 和国防部的关键过渡途径。
有几本书涉及炸药、推进剂和烟火技术,但最近出现的高能材料 (HEM) 的最新信息大多以研究/评论论文的形式散布在文献中。本书是第一本将过去 50 年来文献中积累的材料知识与先进材料的最新发展精心融合在一起的书,并从最终用途的角度阐述了它们的潜力。本书包含六个章节。本书第一章介绍了炸药的显著/基本特征、军用炸药的额外要求及其应用(军事、商业、太空、核能和其他),第二章根据炸药的特殊特性重点介绍了当前和未来炸药的现状。此外,本章还重点介绍了该领域未来的研究范围。第 3 章主要介绍了炸药及其配方的加工和评估的重要方面。第 4 章介绍了广泛用于各种军事和太空应用的推进剂。本章的主要内容致力于高性能和环保氧化剂 (ADN 和 HNF)、新型粘合剂(如丁苯、ISRO 多元醇和其他最先进的高能粘合剂 [GAP、NHTPB;聚(NiMMO)、聚(GlyN)等)的不同方面,高能增塑剂(BDNPA/F、Bu-NENA、K-10 等)以及其他成分,这些成分可能在增强未来推进剂在各种任务中的性能方面发挥关键作用。本章还包括火箭推进剂的抑制和火箭发动机的绝缘及其最新发展。第 5 章讨论了构成爆炸物和推进剂相关任务不可或缺的烟火技术,而第 6 章讨论了对所有在高能材料 (HEM) 领域工作的人来说至关重要的爆炸物和化学安全。JP Agrawal 博士是国际公认的著名爆炸物和聚合物科学家,也是一位出色的作家,发表了大量研究成果。他在书中所写的丰富经验和国际高能材料知识是新一代高能材料科学家和火箭技术人员的宝贵财富。
含能材料和弹药用于火箭、导弹、弹药和烟火装置等任务关键型应用。这些材料是多种不同化学物质的复杂混合物,可制成粉末、粘稠糊状物、高粘稠糊状物和液体等产品,每种产品都必须按照严格的标准制造。英国火箭公司、爱好者和世界各地的其他人也受益于这些改进。RAM 还可以比传统方法快 10 倍至 100 倍地进行研磨、筛分和涂覆,但操作却足够温和,可以处理 3D 打印含能和爆炸性墨水。
摘要:2,4,6三硝基甲苯(俗称TNT)是军事和商业用途最安全、应用最广泛的高能材料之一。第二次世界大战期间,大量TNT被用于填充用于对付敌人的各种常规弹药。结果,大量无用弹药被闲置,要么通过常规处置技术处理,例如露天燃烧、露天引爆、倾倒到海中、焚烧、生物降解,要么未经适当处置就埋入地下。据报道,在处置这些无用和不需要的弹药时发生了多起事故。为了避免这种有害情况,过去全球都在努力重新利用不需要的高能材料,但在这方面仍需要付出更多努力。本研究旨在将倾析的TNT安全转化为可用于采矿、采石、水下爆破活动的商业级高能材料。为此,我们利用各种材料/成分与倾析的 TNT 合成新形成的熔融铸造商业级高能材料。我们通过热重/差热分析 (TG/DTA)、扫描电子显微镜 (SEM) 和 X 射线衍射 (XRD) 技术进一步表征了该特定样品,以识别各个方面。结果表明,新合成的样品具有清晰、致密和
美国南极计划 (USAP) 提议继续在南极洲各地的 USAP 设施和研究地点选择性和受控地使用炸药或其他高能材料。炸药用于建造和维护支持设施以及缓解 USAP 设施或现场的物理危害。炸药的研究用途包括引爆炸药,用于地下环境的地震成像和地壳检查等。此外,USAP 将继续保持最新的炸药技术,并酌情实施创新方法。有时可能需要炸药或其他高能材料来支持专门活动,例如处理过时的炸药或潜在的不稳定物质或缓解不安全的物理条件。这些类型的专门应用相对罕见,其频率难以预测,但通常涉及极少量的炸药。此外,某些高能材料还用于特殊应用,包括远程现场 LC-130 飞机上的辅助起飞 (ATO) 装置、信号枪、烟雾弹和研究火箭。