本文使用文献计量方法来研究美国低收入家庭长期存在的高能源负担问题,重点关注脆弱性、贫困和排斥问题。该领域的文献范围广泛,涵盖了广泛的主题和话题。然而,研究往往侧重于孤立的问题,没有研究影响家庭能源负担的不同领域和政策之间的相互联系。我们利用系统文献综述和可视化的最新方法来弥补这一差距。我们从整体上看待美国的能源负担状况。本文介绍了能源获取的生态系统,分析了不同研究主题之间的相互联系以及不同领域研究的时间演变。我们首先确定这个领域中的关键参与者和利益相关者。接下来,我们确定过去十年文献中的主导主题以及它们与公平和正义方面的联系。
消除正极材料中关键金属的使用可加速全球可充电锂离子电池的普及。有机正极材料完全来自地球上丰富的元素,原则上是理想的替代品,但由于导电性差、实际存储容量低或循环性差,尚未对无机正极构成挑战。在这里,我们描述了一种层状有机电极材料,其高电导率、高存储容量和完全不溶性使锂离子可以可逆地嵌入,使其能够在电极层面上在所有相关指标上与无机基锂离子电池正极竞争。我们优化的正极可存储 306 mAh g –1 正极,能量密度为 765 Wh kg –1 正极,高于大多数钴基正极,并且可以在短短六分钟内完成充放电。这些结果证明了可持续有机电极材料在实际电池中的操作竞争力。
位flip x | a⟩= | a +1⟩相位翻转z | a⟩=( - 1)a | a bit&phase flip y | a⟩= i( - 1)a | A + 1⟩
锂离子电池(LIB)已成为转向电动运输的基石。试图减少生产负载并延长电池寿命,因此必须了解最先进的Libs中的不同降解机制。在这里,我们分析了循环范围的运行温度和电荷(SOC)如何范围范围范围是从TESLA 3远程2018远程电池组中提取的汽车21700级电池的老化,该电池含有含有正电极的lini x Co y Al Z O 2(NCA)和负电极含有SIO X -C。在给定的研究中,我们使用电化学和材料分析的组合来了解细胞中的降解来源。在此表明,锂库存的损失是细胞中的主要降解模式,由于在低SOC范围内循环时,负电极上的材料损失在负电极上。降解在升高的温度下占主导地位,循环到高SOC(超过50%)。©2023作者。由IOP Publishing Limited代表电化学学会出版。这是根据创意共享属性的条款分发的一篇开放访问文章,非商业无衍生物4.0许可(CC BY- NC-ND,http://creativecommons.org/licenses/by-nc-nc-nd/4.0/),如果没有任何原始的工作,则可以在任何原始工作中更改,从而允许在任何媒介中进行过重用,分发,并不更改。要获得商业重复使用的许可,请发送电子邮件至permissions@ioppublishing.org。[doi:10.1149/1945-7111/aceb8f]
使用微聚焦 MeV 质子束 (micro-PIXE) 的质子诱导 X 射线发射是一种强大的分析工具,可用于定量分析样品中微量和痕量元素的空间分布,分辨率可达微米。位于卢布尔雅那的 Jo ˇ zef Stefan 研究所 (JSI) 微分析中心的离子探针光束线 1 通常用于执行 micro-PIXE 映射。由于其出色的功能(例如对冷冻水合组织进行 micro-PIXE 分析 2),它吸引了广泛的用户群,尤其是来自生物学和医学领域的用户 3 – 5 我们的微探针分析的最大总表面积限制为 ∼ 1 mm 2 。后者,再加上对真空样品环境的需求,带来了一些重要的实验限制。因此,我们最近升级了我们的外部光束线,现在可以与微探针光束线互补使用,以中等横向分辨率(几十毫米)对较大的物体进行空中微 PIXE 分析。6
z电子邮件:anastasiia.mikheenkova@kemi.uu.se摘要锂离子电池(LIB)已成为转向电动运输的基石。试图减少生产负载并延长电池寿命,因此必须了解最先进的Libs中的不同降解机制。在这里,我们分析了循环中的运行温度和电荷(SOC)范围如何影响汽车21700级电池的老化,该电池从Tesla 3远程2018远程电池组中提取,其中包含Lini X Co Y Al Z O 2(NCA)的正电极和负电极,并且含有SIO X -C。在给定的研究中,我们使用电化学和材料分析的组合来了解细胞中的降解来源。在此表明,锂库存的损失是细胞中的主要降解模式,在负电极上的材料损失是由于在低SOC范围内循环时会有重要的贡献者。降解在升高的温度下占主导地位,循环到高SOC(超过50%)。图形摘要
摘要:缺乏针对DNA对带电颗粒辐射的电子激发反应的分子级别的理解,例如高能质子,仍然是推进质子和其他离子束癌疗法的基本科学瓶颈。尤其是,不同类型的DNA损伤对高能质子的依赖性代表着重要的知识空隙。在这里,我们使用大量平行的超级计算机采用第一原理实时依赖时间依赖性密度函数理论模拟,以揭示从高能质子到水中DNA的能量传递的量子力学细节。计算表明,质子在DNA糖 - 磷酸侧链上的沉积能量明显多于核仁酶,并且预期在DNA侧链上的能量转移大于水。由于这种电子停止过程,在DNA侧链上产生了高能孔,作为氧化损伤的来源。
洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
摘要:由4 V类氧化物阴极活性材料(CAM),无机固态电解质(SE)和锂金属阳极组成的全稳态电池(ASSB)被认为是储能技术的未来。迄今为止,除了阳极处的已知树突问题外,由于SE的氧化降解和SE和CAM之间的氧化性降解以及机械完整性的丧失,阴极不稳定性被认为是ASSB发育中最重要的障碍。在本研究中,我们通过开发具有两个关键设计元素的复合阴极结构来解决这些挑战:(1)具有高氧化稳定性的HALIDE SE,可以直接使用未涂层的4 V类CAM和(2)单晶(SC)凸轮以消除与体积变化和机械性不稳定相关的跨层间裂纹。我们展示了在此类ASSB细胞上的表现出色的性能,并结合了未涂层的SC-Lini 0.8 CO 0.1 Mn 0.1 O 2(NMC811)CAM,A LI 3 YCL 6(LYC)SE(LYC)SE和合金阳极中的LI-李 - 在C/5的高排放能力为170 mAh/g,在C/5的能力下,在C/5的能力下,几乎是90%的1000 cyc cyceles 1000 cycles 1000 cycles。通过对多晶和单晶NMC811复合阴极的比较研究,我们揭示了在后一种细胞设计中实现这种稳定循环的工作机制。该研究强调了正确的阴极复合设计的重要性,并为表现更好的ASSB细胞的未来发展提供了关键的见解。i