摘要:缺乏针对DNA对带电颗粒辐射的电子激发反应的分子级别的理解,例如高能质子,仍然是推进质子和其他离子束癌疗法的基本科学瓶颈。尤其是,不同类型的DNA损伤对高能质子的依赖性代表着重要的知识空隙。在这里,我们使用大量平行的超级计算机采用第一原理实时依赖时间依赖性密度函数理论模拟,以揭示从高能质子到水中DNA的能量传递的量子力学细节。计算表明,质子在DNA糖 - 磷酸侧链上的沉积能量明显多于核仁酶,并且预期在DNA侧链上的能量转移大于水。由于这种电子停止过程,在DNA侧链上产生了高能孔,作为氧化损伤的来源。
本报告是作为由美国政府机构赞助的工作的帐户准备的。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。 以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。 本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
有足够强大的潮流或足够高的潮汐范围以使能量提取在经济上可行的沿海地区数量有限。在高能量的位点中,当前速度可以定期达到高于2.5m/s(或9km/h)的值,流动总是湍流,这会在时空和时间上产生较高的资源可变性。
•无法冷冻的液体细胞操作;在冷冻之前断开电池与公共汽车的连接阻止充电/放电电池•已经使用高能量的COTS细胞(LG INR18650-M36和Molicel Inrr18650-M35A)进行了测试•在50%,20%,20%,且多个lunar的较高效果下,在50 k下测试了单细胞,并在50 k下进行了多个型号。
碳材料在电化学储能中起着重要作用,因为它们具有低成本、高可用性、低环境影响、表面功能团、高电导率以及热稳定性、机械稳定性和化学稳定性等优点。目前,碳材料可以被认为是超级电容器和电池领域探索最广泛的材料,超级电容器和电池是需要高功率和高能量的广泛应用的设备。然而,与所有技术一样,也有一个适应和优化的过程;因此,碳材料一直在与新兴的进步保持一致。同样,多年来,人们发现了生产更适合储能的碳的新方法和新工艺,使它们与金属基化合物产生良好的协同作用,以满足当前标准。在这项工作中,我们汇集了碳材料领域的进展
我们通过数值探索光子TAMM状态(OT),该光子结构由由纳米结构的金属层组成的光子结构(DBR)上方。评估了几种极化,发生率和模式的映射及其特性。然后,我们通过在金属图案下方添加钴层并切换其磁化强度来获得OT的磁控制。该控制在等离子原料中广泛使用,利用了横向磁光kerr效应(TMOKE)。该结构的模拟Tmoke signal的幅度为10-3,与常规的磁性结构相比,在金属条纹之间提供了高能量的结果。除了可以更好地访问分析物进入敏感区域的金属层开放外,这为在生物和化学感测应用中的敏感性较高的道路铺平了道路。
在自然中发现的数千个实例所表明的,光诱导的反应在生物合成转化中的重要性是无可争议的。1光化学在于使用光子将感兴趣的基材从其基态转移到其激发态,在那里它可以反应并随后转化。尽管如此,这些高能量的中间体特别困难地驯服,并且可以培养出异常和不可预见的反应性。已经制定了各种策略来利用这些瞬态物种并引导光诱导的转化。2中,将特定的超分子相互作用用于模板反应被认为是一种特别有吸引力的策略。3的确,通过提供定义的两维环境,诸如静电,H键,π堆积之类的弱相互作用仅举几例,可以模板反应性分子并诱导区域和立体选择性。这种策略自然扩展到将生物分子用作模板脚手架的使用。4,例如,据报道,环糊精5和葫芦素6允许
在自然界中发现的示例的典范所表明的,光诱导的反应在生物合成转化中的重要性是无可争议的。1光化学在于使用光子将感兴趣的基材从其基态转移到其激发态,在那里它可以反应并随后转化。尽管如此,这些高能量的中间体特别困难地驯服,可以培养出异常和不可预见的反应性。已经制定了各种策略来利用这些瞬态物种并引导光诱导的转化。2中,将特定的超分子相互作用用于模板反应被认为是一种特别有吸引力的策略。3的确,通过提供定义的二维环境,弱静电相互作用,例如静电,H键,p堆叠,仅举几例,可以模板反应性分子并诱导区域和立体选择性。这种策略自然已扩展到将生物分子用作模板sca效率的使用。4
1988 年 12 月,随着中能重离子加速器 (MEHIA)(14 UD Pelletron 加速器)设施的投入使用,该国首次获得了足够高能量的重离子束,适合进行核物理的高级研究。在这一年中,Pelletron 加速器设施周围的四条光束线和相关实验设备的设置已经完成。实验设施包括通用散射室、BGO 伽马射线探测器多重装置、用于放射化学研究的靶辐照设施和基于 CAMAC 的多参数数据采集系统。虽然许多基础核物理研究项目都利用了 Pelletron 加速器设施,但也有几项研究项目是利用 Trombay Van de Graaff 加速器和加尔各答 VEC 的带电粒子束进行的。特朗贝 Cirus 反应堆产生的中子束也用于裂变研究。
随着柔性和可穿戴电子产品的快速发展,寻找可靠、安全、高能量的可充电柔性电池 (FB) 成为近年来的研究热点。尽管业界展示了一些 FB 原型,学术界报道的出版物数量也在迅速增加,但大多数演示都是在实验室规模上进行的,仍然很难找到该技术在市场上的真正应用。这一观点旨在讨论和分析将 FB 推向商业可行水平的关键指标,包括能量密度、灵活性和安全性,特别关注文献中报道最多的锂电池和锌电池。我们首先将现有锂基和锌基 FB 的 FB 品质因数 (fb FOM) 与市场应用的要求进行比较。然后,我们分析最理想的高灵活性电池配置,然后系统地讨论高能量密度 FB 的特性和材料选择。第三,我们讨论实现