本文报道了高表面积活化还原氧化石墨烯 (arGO) 的制备方法,该氧化石墨烯被氧化成富含缺陷的 GO (dGO) 的 3D 类似物。arGO 的表面氧化导致碳氧比 C/O = 3.3,类似于氧化石墨烯的氧化状态,同时保持约 880 m 2 g −1 的高 BET 表面积。表面氧化 arGO 的分析表明,氧官能团含量高,可将疏水前体转化为亲水材料。高表面积碳为氧化提供了整个表面,而无需插层和晶格膨胀。因此,表面氧化方法足以将材料转化为具有与氧化石墨烯相似化学性质的 3D 结构。“3D 氧化石墨烯”在极宽的 pH 区间内表现出对 U(VI) 去除的高吸附能力。值得注意的是,表面氧化的碳材料具有刚性的三维结构,微孔可供放射性核素离子穿透。因此,块状“3D GO”可直接用作吸附剂,而无需分散,这是 GO 使其表面积可供污染物进入的必要步骤。
可以通过合成后修饰(PSM)策略来规避,这进一步扩大了MPN的功能。[28]尽管已经引入了广泛的不同化学功能,但功能生物学实体的实现,例如肽,蛋白质或寡核苷酸,有望在非对称有机催化,鼠分离或特定的离子/气体/气体结合的非对称有机体所需的高度特定相互作用的MPN出现。ma等。在酰胺连接的COF中优雅地利用了缺陷,以固定赖氨酸,溶菌酶或三肽Lys-val-Phe在残留的羧酸盐上。[29]该材料被证明能够进行手性分离,但缺陷代表了COF结构中固有的构象柔韧性和降低的结晶度。使用功能构建块的共聚方法成功地导致将Pro引入有组织的COF中。[30]途径需要保护组的策略,强制执行额外的脱身步骤,并避免COF网络中的功能实体的本地拥挤,在实施功能性肽域时,随着分子量的增加,可能会变得越来越具有挑战性。[31]
1. 引言 活性炭是一种具有高表面积和孔隙率的碳质材料。它来源于碳含量较高的富碳有机前体,例如煤、聚合物或生物质,在高温下对这些材料进行物理或化学活化以增加碳含量[1]。换句话说,活性炭是通过热分解碳含量较高的富碳有机材料获得的。文献中明确定义活性炭是通过富碳有机材料的物理或化学活化获得的[2]。简而言之,物理活化可以通过单阶段[3]或两阶段[4]过程进行。在常用的两阶段过程中,富碳材料的碳化是在惰性气氛中的反应器中实现的,然后使用CO 2 、蒸汽、空气或它们的混合物进行活化以增加表面积和孔隙率[5]。化学活化工艺是一个单阶段工艺,其中将碳质材料与活化剂(例如氢氧化钾、磷酸和氯化锌)混合,然后在惰性气氛下施加高温获得活性炭 [1]。其目的是通过使用任一活化工艺来合成高表面积和高孔隙率的活性炭材料。
技术数据表类型:Pearlstick™ 5778 NT1 TPU 是一种聚酯型热塑性聚氨酯 (TPU)。特点:它特别适合分散视频、音频和数据存储应用中使用的钴铁氧体以及 Cr02 颜料。该产品在加速测试条件下具有出色的水解稳定性以及出色的颜料分散特性。由于其中等 Tg,它具有出色的附着力和更易于压延的高质量视频和音频配方。通过与其他更硬的分散树脂混合,可以配制出优质的录像带。它还用作聚合物分散剂来分散高表面积颜料。
此外,纳米颗粒可以通过将污染物吸附到其表面上来改善污染物的生物利用度,从而使其更容易获得微生物的摄取和降解。这个过程可以显着加速有机污染物的生物降解速率,因为微生物可以直接与吸附的污染物相互作用。此外,纳米颗粒的高表面积允许与微生物细胞更好地相互作用,从而促进附着和生物膜形成。增强的生物膜形成对于有效的生物降解至关重要,因为生物膜为微生物群落提供了保护环境并促进营养交换(Zhang等,2019)。总体而言,在生物修复策略中纳米颗粒的整合会导致微生物活性增加,从而增强污染物降解过程。
摘要:通过 1,8-二氨基萘衍生物的电化学反应对平面碳电极进行廉价的溶液相改性,通过形成 15 - 22 纳米厚的有机薄膜,使容量增加了 120 至 700 倍。用相同方法改性高表面积碳电极可使容量增加 12 至 82 倍。改性层含有 9 - 15% 的氮,以 - NH - 氧化还原中心的形式存在,从而产生较大的法拉第分量,每个电子对应一个 H + 离子。在 0.1 MH 2 SO 4 中长时间循环后,电极没有容量损失,并且电荷密度明显高于基于石墨烯和聚苯胺的类似报道电极。对沉积条件的研究表明,N 掺杂的低聚物带是由重氮离子还原和二氨基萘氧化形成的,而 1,8 异构体对于大容量增加至关重要。容量增加至少有三个原因:带形成引起的微观表面积增加、含氮氧化还原中心的法拉第反应以及极化子形成导致的带电导率变化。开发了一种水相制造工艺,既提高了容量,又提高了稳定性,并且适合工业生产。二氨基萘衍生薄膜的高电荷密度、低成本制造和 <25 纳米厚度应该对平面和高表面积碳电极的实际应用具有吸引力。关键词:超级电容器、可再生能源、重氮还原、法拉第储能、导电聚合物/碳复合材料、N 掺杂碳材料
纳米素是一个新型的磁盘,上面覆盖了高密度的微型和纳米结构二氧化硅,可用于快速提取和纯化高质量的DNA和RNA。高表面积和独特的结合机制使其具有非凡的结合能力,可以在微离心管格式中隔离高纯度,高分子量(HMW)DNA。它使用标准的液化,绑定,洗涤和洗脱程序,对于二氧化硅DNA提取技术是常见的。每个管中使用一个磁盘。但是,与磁珠和二氧化硅自旋柱不同,这些磁珠剪切了大DNA,纳米蛋白磁盘结合并释放了DNA而不破碎的DNA,以将DNA长到巨囊中。
- 金属前体和还原方案对无选择性增强剂直接合成过氧化氢的无氯催化剂制备的影响,ChemCatChem,2016,8,1564-1574。 - 柔性聚合物基质在固定化纳米粒子催化转化中的独特作用,RSC Advances,2015,5,56181-56188。 - 用于直接合成过氧化氢的钯催化剂的原位 X 射线吸收精细结构光谱:在溴离子存在下金属相的浸出和还原,ChemCatChem,2015,7,3712-3718。 - 新型高表面积聚合物的干燥和膨胀状态形态,微孔和中孔材料,2014,185,26–29。 - 用于将甘油氢解为丙二醇的树脂基催化剂,Top. Catal.,2013,56,822–830。
在这项研究中,Mengying Yuan和合着者引入了二维石墨烯(GO)片(GO)片,具有高表面积和出色的机械性能成固体聚乙烯氧化物/锂盐电解质。GO板提高了离子电导率,并提高了聚合物电解质的拉伸强度,并且似乎显着增强了锂离子电池的性能。为了测量锂盐解离分数,使用了带有Microlab软件的Cary 630 FTIR系统。分离部分是作为位于两个特定范围的峰下面的各个区域的比率:620至624 cm –1范围,代表解离的“游离” CLO 4
超级电容器的能量密度仍然是一个重大挑战,限制了其广泛的应用。氧化石墨烯(GO)是一种源自石墨的二维纳米材料,由于其出色的电导率,高表面积和出色的机械强度,因此提供了有希望的解决方案。eumelanin可以看作是GO的天然亲戚,并且还将被研究为可持续的非常规材料,用于能量收集和传感应用,也将基于有机体和基于沙尔卡原自由基掺杂剂整合。该博士研究项目的重点是探索GO-以及基于Eumelanin的超级电容器,以解决当前的局限性并开发新的电极以及运输层设计,以改善性能和概述商业化的步骤。