可以通过合成后修饰(PSM)策略来规避,这进一步扩大了MPN的功能。[28]尽管已经引入了广泛的不同化学功能,但功能生物学实体的实现,例如肽,蛋白质或寡核苷酸,有望在非对称有机催化,鼠分离或特定的离子/气体/气体结合的非对称有机体所需的高度特定相互作用的MPN出现。ma等。在酰胺连接的COF中优雅地利用了缺陷,以固定赖氨酸,溶菌酶或三肽Lys-val-Phe在残留的羧酸盐上。[29]该材料被证明能够进行手性分离,但缺陷代表了COF结构中固有的构象柔韧性和降低的结晶度。使用功能构建块的共聚方法成功地导致将Pro引入有组织的COF中。[30]途径需要保护组的策略,强制执行额外的脱身步骤,并避免COF网络中的功能实体的本地拥挤,在实施功能性肽域时,随着分子量的增加,可能会变得越来越具有挑战性。[31]
本文报道了高表面积活化还原氧化石墨烯 (arGO) 的制备方法,该氧化石墨烯被氧化成富含缺陷的 GO (dGO) 的 3D 类似物。arGO 的表面氧化导致碳氧比 C/O = 3.3,类似于氧化石墨烯的氧化状态,同时保持约 880 m 2 g −1 的高 BET 表面积。表面氧化 arGO 的分析表明,氧官能团含量高,可将疏水前体转化为亲水材料。高表面积碳为氧化提供了整个表面,而无需插层和晶格膨胀。因此,表面氧化方法足以将材料转化为具有与氧化石墨烯相似化学性质的 3D 结构。“3D 氧化石墨烯”在极宽的 pH 区间内表现出对 U(VI) 去除的高吸附能力。值得注意的是,表面氧化的碳材料具有刚性的三维结构,微孔可供放射性核素离子穿透。因此,块状“3D GO”可直接用作吸附剂,而无需分散,这是 GO 使其表面积可供污染物进入的必要步骤。