引用黄,Tony P.,Zachary J. Heins,Shannon M. Miller,Brandon G. Wong,Pallavi A. Balivada,Tina Wang,Ahmad S. Khalil等。“针对单核苷酸 - 吡啶二酰胺PAM的紧凑型Cas9变体的高通量连续演变。”nat Biotechnol 41,no。1(2022):96-107。doi:10.1038/s41587-022-01410-2
通过纳米和微技术(量子点和微流体)的融合,我们创建了一个能够对人类血清样本中的传染性病原体进行多重、高通量分析的诊断系统。作为概念验证,我们展示了能够检测全球最流行的血液传播传染病(即乙型肝炎、丙型肝炎和 HIV)血清生物标志物的能力,样本量少(<100 µ L),速度快(<1 小时),灵敏度比目前可用的 FDA 批准方法高 50 倍。我们进一步展示了同时检测血清中多种生物标志物的精确度,交叉反应性最小。该设备可以进一步发展成为便携式手持式即时诊断系统,这将代表发达国家和发展中国家在检测、监测、治疗和预防传染病传播方面的重大进步。
摘要:寻找新的机制解决方案以应对生物催化挑战是酶进化适应以及设计新催化剂的关键。最近人造物质被释放到环境中,为观察生物催化创新提供了动态试验场。用作杀虫剂的磷酸三酯最近才被引入环境中,而它们并没有天然对应物。为了应对这一挑战,酶已迅速进化以水解磷酸三酯,并趋向于相同的机制解决方案,即需要二价阳离子作为催化的辅助因子。相比之下,先前发现的宏基因组混杂水解酶 P91(乙酰胆碱酯酶的同源物)实现了由金属独立的 Cys-His-Asp 三联体介导的缓慢磷酸三酯水解。在这里,我们通过对 P91 进行定向进化来探究这种新催化基序的可进化性。通过将聚焦库方法与液滴微流体的超高通量相结合,我们仅通过两轮进化就将 P91 的活性提高了约 360 倍(达到 ak cat / KM ≈ 7 × 10 5 M − 1 s − 1 ),可与自然进化的金属依赖性磷酸三酯酶的催化效率相媲美。与其同源物乙酰胆碱酯酶不同,P91 不会遭受自杀抑制;相反,快速的去磷酸化速率使共价加合物的形成而不是水解速率成为限制因素。定向进化改进了这一步骤,中间体的形成速度提高了 2 个数量级。将聚焦的组合库与液滴微流体的超高通量相结合,可以用于识别和增强自然界中尚未达到高效率的机制策略,从而产生具有新型催化机制的替代试剂。■ 简介
十多年前,无人机 (UAV) 被视为农业的新纪元 (Zarco-Tejada,2008)。从今天的角度来看,无人机在农业中的应用最大的影响体现在高通量田间表型分析上。田间表型分析是指对植物在自然环境中的表型(即其解剖、个体发育、生理和生化特性)进行定量描述 (Walter et al.,2015)。在育种方面,需要筛选数百甚至数千种不同的基因型来研究它们对植物性状和性能的影响,高通量田间表型分析可以在育种的早期阶段及时快速地筛选多种性状。这有可能缩短育种周期,并避免因连锁拖累而丢失潜在的重要等位基因(Araus 和 Cairns,2014 年;Furbank 和 Tester,2011 年;Rebetzke 等人,2019 年)。由于无人机系统作为遥感平台已经成熟(Aasen 等人,2018 年),几乎所有田间表型分析领域的“大玩家”(研究团体、公司和其他组织)都已开始使用无人机进行
3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。 *相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。 缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。 在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。 我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。 我们在计算上筛选了跨越各种化学类别的12,000多种化合物。 对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。 值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。 其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。 患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。*相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。我们在计算上筛选了跨越各种化学类别的12,000多种化合物。对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。我们的工作证明了在与ML串联串联中使用表型筛选的使用可以有效地识别具有很少已知分子靶标的高度异质指示中个性化处理的治疗铅。关键字:胶质母细胞瘤,人工智能,药物发现,机器学习简介胶质母细胞瘤多形(GBM)是人类成年人中最常见和最具侵略性的原发性脑肿瘤,其特征是遗传驱动因素的实质异质性和肿瘤微环境1-3。在过去20年中,新诊断的GBM患者的护理标准包括手术,替莫唑胺(TMZ)和电离辐射(IR),延长了12个月至15个月患者的总体生存期4,5。大规模的基因组分析增强了我们对GBM分子生物学的理解,后者支持
引用黄,Tony P.,Zachary J. Heins,Shannon M. Miller,Brandon G. Wong,Pallavi A. Balivada,Tina Wang,Ahmad S. Khalil等。“针对单核苷酸 - 吡啶二酰胺PAM的紧凑型Cas9变体的高通量连续演变。”nat Biotechnol 41,no。1(2022):96-107。doi:10.1038/s41587-022-01410-2
优化酶在新型化学环境中起作用是合成生物学具有广泛应用的核心目标。在这项工作中,我们通过使用机器学习(ML)从超高通知功能屏幕中融合进化信息和实验数据来开发一种技术,用于设计蛋白质变体的活跃和多样化的蛋白质变体库。我们在多轮运动中验证了我们的方法,以优化NUCB的活性,nucB的活性,核酸酶酶在慢性伤口的治疗中应用。我们将我们的ML引导运动与维特罗定向进化(DE)和尼里科(Silico In-Silico)命中重组(HR)的平行运动进行了比较。ML引导的运动发现了数百种高度活跃的变体,最多有19倍的核酸酶活性改善,表现优于DE发现的12倍改进,并且在命中率和多样性方面表现出色。我们还表明,仅在进化数据上训练的模型而无需访问任何实验数据,就可以比传统的初始图书馆生成方法以明显高的速率设计功能变体。为了推动ML引导酶设计的未来进展,我们策划了一个55K多种变体的数据集,这是迄今为止最广泛的基因型 - 表型酶活性景观之一。数据和代码可在以下网址提供:https://github.com/google-deepmind/nuclease_design。
微生物组越来越被认为是健康的关键因素。肠道菌群通过一系列不同的代谢物调节17个肠道稳态。例如,饮食纤维的微生物发酵产物(SCFAS)等分子已经建立了19个分子,以反映微生物组和/或饮食转移,而SCFAS的变化已有20种与来自癌症的多种胃肠道疾病有关。尽管具有21种生物标志物的潜力,但粪便收集的技术挑战的临床翻译有限。在这里,我们22个粪便擦拭(s'wipe),这是一种使用无毛,质量23光谱兼容纤维素湿巾作为厕纸的超低成本粪便收集方法。标本保存在乙醇24中,无需冷藏,可以通过常规邮件运送。质谱分析25表明,S'Wipe捕获了具有可重现性26的挥发性和非挥发性代谢物,并且对诊断相关的分子进行了验证。我们表明,s'wipe在指导凳子收集方面的性能等效27,从而可以与28个现有研究进行可互换的使用和比较。这种方法非常适合大规模的人群研究,29次纵向跟踪和个性化医学应用。30
设计酶以在新型化学环境中起作用是合成生物学具有广泛应用的核心目标。在这项工作中,我们描述了一项由机器学习(ML)引导的运动,以设计核酸酶NucB,核酸核酸核酸hut(一种酶)在治疗慢性伤口时应用。在多轮酶演化运动中,我们将超高通量功能筛选与ML相结合,并将其与维特罗定向进化(DE)的平行运动(DE)和硅内命中率重组(HR)进行了比较。ML引导的运动发现了数百种高度活跃的变体,最多有19倍的核酸酶活性改善,表现优于DE发现的12倍改进。此外,ML设计的命中率距离NUCB WildType高达15个突变,在命中率和多样性方面远远超过了HR方法。我们还表明,仅在进化数据上训练的模型而无需访问任何实验数据,就可以比传统的初始图书馆生成方法以明显高的速率设计功能变体。为了推动ML引导设计的未来进展,我们策划了一个55K多种变体的数据集,这是迄今为止最广泛的基因型 - 表型酶活性景观之一。数据和代码可在以下网址提供:https://github.com/google-deepmind/nuclease_design。
设计酶以在新型化学环境中起作用是合成生物学具有广泛应用的核心目标。使用机器学习(ML)引导蛋白质设计有可能通过精确导航坚固的健身景观来加速发现高性能酶。在这项工作中,我们描述了ML引导的运动,以设计Nuclease NucB,该核定是一种酶,该酶在治疗慢性伤口的酶降解生物膜,以治疗慢性伤口。在多发酶演化活动中,我们将超高通量功能筛选与ML相结合,并将其与平行的电脑内定向进化(DE)和硅内命中重组(HR)策略进行了比较。ML引导的运动发现了数百种高度活跃的变体,最多有19倍的核酸酶活性改善,而DE的最佳变体提高了12倍。此外,ML设计的命中率距离NUCB WildType高达15个突变,在命中率和多样性方面远远超过了HR方法。我们还表明,仅在进化数据上训练的模型而无需访问任何实验数据,就可以比传统的初始图书馆生成方法以明显高的速率设计功能变体。为了推动ML引导设计的未来进展,我们策划了一个55K多种变体的数据集,这是迄今为止最广泛的基因型 - 表型酶活性景观之一。数据和代码可在以下网址提供:https://github.com/google-deepmind/nuclease_design。