对现有旋转编织机的评估得出结论,所有旋转编织机的性能都受到其所采用的一个或多个概念的限制。没有一种设计能够优化旋转编织概念的一个或两个以上的方面。通过确保旋转编织概念的所有主要领域都得到一致优化,可以提高整体机器性能。设计优化分为两个部分。——第一部分是线材(产品)行为的理论和实验研究。这允许设计一种引导线材的“棒”机制,以补充线材控制标准。外部线材的控制是旋转编织机性能的基础。
根据旋转变压器的特性,驱动运放需要有以下特性: • 旋转变压器的励磁原边线圈通常是有很低的DCR ( 直流电阻),通常小于100Ω,因此需要有较强的电流 输出能力才可以驱动线圈,最高至200mA。 • 为了保证的精度以及线性度,在旋转变压器的应用中需要具备较高的SR(压摆率Slew Rate)。 • 旋转变压器的常见激励方式为差分推挽输出,对放大器要求较宽的带宽以及较高的开环增益,以确保信 号不失真。 • 汽车应用EMI 环境复杂,为了保证励磁功率放大电路不被干扰,放大电路需要具备一定的EMI 抑制能力。 • 作为高功率驱动级,需要具备限流和过温关断功能,保证系统的可靠性和鲁棒性。 • 传统的解决方案是利用通用运放和分立三极管搭建高输出电流,电路复杂可靠性低,且并且难以集成热 关断和限流保护等功能。NSOPA240X 运算放大器具有高电流输出能力,最大可支持400mA 的持续电流 输出。并集成了过温关断,限流保护等安全功能,满足各类旋转变压器驱动的需求。
1弗劳恩霍夫太阳能系统ISE ISE,Heidenhofstraße2,79110 Freiburg,德国2 ASYS Automation Systems GmbH,Benzstr。10,89160德国Dornstadt 3 Gallus Ferd。 rüeschag,Harzbüchelstrasse34,9016 St. Gallen,瑞士4 Lehner Engineering GmbH,Ebnettstrasse 18,9032,瑞士5 1,0676德国Bitterfeld-Wolfen 7 Kurt Zecher GmbH,Görlitzerstr 2,33098德国Paderborn 8技术大学达姆斯塔特,Magdalenenstraße2,64289 Darmstadt,德国,德国9现在,现在有:Thieme Gmbh&Co。KG,Robert-Bosch-Bosch-Straße1,79331 teneningen,Dergem摘要:在研究项目“摇滚明星”中开发的创新的高通量旋转式示范机上制造的钝化发射器和后触点(PERC)太阳能电池。 该机器旨在使用新开发的航天飞机运输系统执行最多600 mm/s的硅太阳能电池的金属化 在第一个实验中,多晶硅(MC-SI)PERC太阳能电池在后侧金属,旋转筛网印刷获得的平均转换效率为η= 19.3%,该效率与带有筛网印刷后侧的参考单元的水平相同金属化(η= 19.3%)。 此外,提出了一个9个细胞示范器模块,其中显示了在演示器和Smartwire(SWCT)互连上部分金属金属的细胞。10,89160德国Dornstadt 3 Gallus Ferd。rüeschag,Harzbüchelstrasse34,9016 St. Gallen,瑞士4 Lehner Engineering GmbH,Ebnettstrasse 18,9032,瑞士5 1,0676德国Bitterfeld-Wolfen 7 Kurt Zecher GmbH,Görlitzerstr2,33098德国Paderborn 8技术大学达姆斯塔特,Magdalenenstraße2,64289 Darmstadt,德国,德国9现在,现在有:Thieme Gmbh&Co。KG,Robert-Bosch-Bosch-Straße1,79331 teneningen,Dergem摘要:在研究项目“摇滚明星”中开发的创新的高通量旋转式示范机上制造的钝化发射器和后触点(PERC)太阳能电池。该机器旨在使用新开发的航天飞机运输系统执行最多600 mm/s的硅太阳能电池的金属化在第一个实验中,多晶硅(MC-SI)PERC太阳能电池在后侧金属,旋转筛网印刷获得的平均转换效率为η= 19.3%,该效率与带有筛网印刷后侧的参考单元的水平相同金属化(η= 19.3%)。此外,提出了一个9个细胞示范器模块,其中显示了在演示器和Smartwire(SWCT)互连上部分金属金属的细胞。关键字:硅太阳能电池,制造和加工,PERC,金属化,旋转印刷1简介平面丝网印刷(FSP)是晶体硅(SI)太阳能电池的最新技术。尽管在过去几年内生产率取得了显着进步,但FSP工艺几乎接近技术限制,而吞吐量的进一步增加。应对这一挑战的一种非常有前途的方法是应用高生产性旋转印刷方法,即旋转丝网印刷(RSP)和Flexographic Printing(FXP)。在资助的研究项目中»摇滚明星«(合同号13N13512),一个项目合作伙伴和研究机构的项目构成,已经为开发旋转印刷演示机的雄心勃勃的目标设定了一个雄心勃勃的目标,该机器能够实现高达600 mm/s的太阳能电池的金属化,这与每小时8000 Wafers of 8000 wafers on Single of 600 mm/s的印刷速度相当于。在项目中,已经在开发材料,打印过程和机器平台方面做出了巨大的努力。在这项工作中,我们介绍了»摇滚之星«演示器的概念以及第一个PERC太阳能电池的I-V-结果,这些perc太阳能电池已使用演示器机器上的旋转丝网印刷单元进行了部分金属化。此外,还提出了通过互连»岩石星«Perc太阳能电池与智能Wire Interonnection技术(SWCT)制造的9细胞演示器模块。2摇滚乐演示器平台2.1演示器机器»摇滚明星的主要目标是开发用于硅太阳能电池高通量金属化的创新机器平台。雄心勃勃是要根据对所应用的旋转印刷方法进行基本和激烈评估的基础来实现具有高技术准备水平(TRL)[1] [1]的机器[2-6]。
摘要 牵引传动系统作为高速列车的动力系统,是保障高速列车安全稳定运行的关键系统之一。故障测试验证平台是保证高速列车实时故障诊断方法有效应用的重要途径。针对高速列车牵引传动系统故障测试验证平台面临的挑战性问题,分析了故障注入、仿真可靠性评估、算法性能评估、仿真平台实现的方法与技术,并总结了针对上述问题的一些解决方案。在此基础上,提出并搭建了集高速列车实时仿真、故障场景真实模拟、随机故障测试和故障诊断算法评估为一体的高速列车牵引传动系统故障测试验证平台。最后对高速列车安全监测与验证平台未来的研究方向进行了总结和展望。关键词故障测试,验证平台,故障注入,测试评估,高速列车牵引传动系统引用杨超,彭涛,杨春华,陈志文,桂伟华。高速列车牵引传动系统故障测试与验证仿真平台。自动化学报,2019,45(12):2218−2232
摘要在操作中,印刷电路板(PCB)将面临各种和重复的热机械载荷,这可能导致铜的故障,从而导致PCB本身故障。为了模拟和更好地预测PCB的可靠性,必须定义铜的本构行为。在目前的工作中,在循环拉伸压缩载荷下经常测试了在灵活的PCB行业中经常使用的17 µm滚动退火灯泡。铜的弹性极限较低,塑性变形起着在应变过程中起重要作用。在循环载荷下,已经观察到主要的运动硬化。已通过Lemaitre-Chaboche硬化模型确定了所研究铜胶的塑性行为。接下来,已经开发出一种原始的实验设置,从而可以测量循环载荷下薄铜纤维的疲劳行为。进行了各种负载振幅的测试。已经采用了一个共同的曼森模型来重现实验数据。
使用现代快速技术的这个单线绝对编码器通过SSI接口(同步串行接口)传输与轴设置相对应的位置值。AHS58-H的分辨率是每革命的最大65536步。与AHS58系列相比,编码器没有微控制器。因此,它是一个纯的硬件编码器。控制模块将时钟束发送到绝对编码器以获取位置数据。旋转编码器然后将位置数据同步发送到控制模块的周期。可以选择使用函数输入的计数方向。绝对编码器直接安装在应用轴上,而无需任何耦合。绝对编码器的旋转由扭矩休息预防。电气连接是由12针圆形插头连接器进行的。也可以使用带有1 m电缆连接器的版本。