根据其章程,AGARD 的使命是将北约国家在航空航天科学技术领域的领军人物聚集在一起,以实现以下目的: - 为成员国推荐有效的方式,以便利用其研究和开发能力造福北约社区; - 向军事委员会提供航空航天研究和开发领域的科学和技术建议和援助(特别是在军事应用方面); - 不断促进与加强共同防御态势相关的航空航天科学进步; - 改善成员国在航空航天研究和开发方面的合作; - 交流科学和技术信息; - 向成员国提供援助,以提高其科学和技术潜力; - 根据要求,向其他北约机构和成员国提供与航空航天领域研究和开发问题有关的科学和技术援助。
预计将在现有宙斯盾作战系统架构的基础上,变得更加复杂,但仍是一个集成度高、可轻松操作的作战系统。基于 FDDI(光纤分布式数据网络)的高速网络可以满足对更多带宽的需求,集成船上的实时和其他通信服务。本文支持以下观点:FDDI 不仅可以成功取代舰船作战系统中的现有通信,还可以提供增强的操作水平,
摘要:转子的稳定悬浮是磁悬浮控制动量陀螺仪的重要要求之一,陀螺效应是转子的一个显著特性。为研究转子结构与陀螺效应之间的关系,引入惯性比的概念,研究惯性比与陀螺效应之间的关系。为提高转子的悬浮稳定性,在建立转子悬浮系统模型的基础上,研究了交叉反馈控制(CFC)方法,指出转子在旋转作用下,仅采用分布式PID控制无法使转子悬浮稳定。为更有效的抑制陀螺效应并在更宽的转速范围内维持稳定悬浮,提出了一种带预调增益的CFC方法。研究结果验证了所提出的CFC方法能有效抑制陀螺效应引起的转子振动。试验结果还表明,较大的惯性比有利于抑制转子陀螺效应,并能在一定程度上提高悬浮稳定性。此外,通过优化惯性比,设计了MSCMG转子,角动量为200 Nms。本文对高速转子的机械设计和稳定悬浮研究具有重要的指导意义。
摘要:量子密钥分发 (QKD) 是目前以信息理论安全方式远距离生成密钥的成熟方法,因为 QKD 的保密性依赖于量子物理定律而不是计算复杂性。为了实现 QKD 的工业化,需要低成本、大规模生产和实用的 QKD 装置。因此,发送器和接收器各自组件的光子和电子集成目前备受关注。我们在此介绍一种高速 (2.5 GHz) 集成 QKD 装置,其特点是硅光子发射芯片可实现高速调制和精确状态准备,以及采用飞秒激光微加工技术制造的铝硼硅酸盐玻璃中偏振无关的低损耗接收器芯片。我们的系统实现的原始误码率、量子误码率和密钥速率相当于基于分立元件的更复杂的最先进装置 [1,2]。
• 传统的暖风干手器使用宽幅暖风喷射,通过蒸发来干燥双手。将双手放在干手器出口下方的气流中,典型的干燥时间为 20-30 秒。ETL 不涵盖这种类型的电动干手器。• 高速暖风干手器使用暖风喷射,其驱动速度比传统干手器更高。可以将双手放在干手器下方或插入开口中。使用更强大的电机将空气速度提高到约 50-80 米/秒,从而将干燥时间缩短到约 10-15 秒。因此,通过减少干燥时间和加热要求来节省能源。• 高速环境空气干手器使用高速环境空气,从而物理去除双手上的水分。可以将双手放在干手器下方或插入开口中,空气从两侧引导。用于驱动空气的电机比暖风干手器的电机更强大,因此空气速度更快,并且不需要加热器。典型的干燥时间约为 10-15 秒。
“我们以远见的态度进入了加速器,但是我们采取了精致的策略和对生物技术景观中涉及的复杂性的更深入的了解。该计划强调了协作的重要性,我们学会了如何有效地将我们的价值主张传达给潜在的合作伙伴和投资者。
上下文。涡流流。有人提出,涡旋对于将能量和等离子体引导到电晕起起着重要作用,但是在现实的设置中尚未直接研究涡流流对电晕的影响。目标。我们使用冠状环的高分辨率模拟来研究涡流加热的作用。涡流不是人工驱动的,而是由磁反看自s谐的。方法。我们使用Muram代码执行3D电阻MHD模拟。在笛卡尔几何形状中研究一个孤立的冠状环使我们能够解决环内部的结构。我们进行了统计分析,以确定从色球到电晕的高度的涡度性能。结果。我们发现,注入回路的能量是由强磁元素内的内部相干运动产生的。在涡流管中通过涡旋管中的涡流引导,产生的po弹孔的显着部分被引导,形成光球和电晕之间的磁连接。涡旋可以形成连续的结构,达到冠状高度,但是在电晕本身中,涡流管变形,并最终随着高度增加而失去身份。涡流显示出向上向上的po弹孔和色球和电晕中的加热速率,但随着高度的增加,它们的效应变得不太明显。结论。虽然涡旋在色球环和低电晕中的能量传输和结构中起着重要作用,但它们在大气中的重要性较高,因为漩涡与环境的区别不太区分。到达电晕的涡流管与冠状发射显示复杂的关系。
本文概述了旋转空间站大型技术演示器的设计。其目的有两个:获取有关大型旋转结构的行为、操作和控制的知识,为未来旋转空间站的设计提供参考;首次在地球轨道上模拟月球、火星、地球和其他太阳系的重力。该设计设想了一个桁架结构,形成一个圆形的开环,类似于一个巨大的呼啦圈。它摒弃了自行车车轮的方法,通过环的圆形结构而不是辐条和轮毂来解决旋转拉力。该环的临时总直径为 217 米,结构横截面积为 8 米。它以一系列角速度上下旋转以模拟不同的重力。微重力发生在静止时,地球重力发生在全速旋转时。低推力发动机提供旋转加速、旋转减速、姿态控制和驻留。光伏毯提供电力。六次发射可将整个技术演示器以存放的分段形式送入轨道,这些分段在地面控制下展开和组装。任务结束时,环将被拆除,其弯曲分段将转换为直梁,以供后续应用。关键词:技术演示器、旋转站、可展开结构、人造重力
摘要。在本文中,我们研究了由洛伦兹提升引起的单个粒子纠缠。我们将粒子描述为自由狄拉克方程的解决方案,一种狄拉克·比斯皮诺(Dirac Bispinor),并将诱导的动量旋转纠缠与在相对论旋转1/2状态的广泛考虑的框架中获得的结果进行了比较。两种方法的自旋线性熵在超级主义极限中一致。我们还验证了双旋格纠缠与双旋转病例的旋转熵之间的不同,表明涉及Dirac Bispinor状态的自由度:动量,自旋,自旋和本质平等的真正多部分纠缠。Dirac Bispinors属于完整Lorentz群体的不可约表示的事实(也包括均等作为对称性),是这种非平凡结构的最终原因。