量子通信基于量子态的生成和量子资源在通信协议中的利用。目前,光子被认为是信息的最佳载体,因为它们能够实现长距离传输,具有抗退相干性,而且相对容易创建和检测。纠缠是量子通信和信息处理的基本资源,对量子中继器尤为重要。超纠缠是一种各方同时与两个或多个自由度 (DoF) 纠缠的状态,它提供了一种重要的额外资源,因为它可以提高数据速率并增强错误恢复能力。然而,在光子学中,处理线性元素时,信道容量(即最终吞吐量)从根本上受到限制。我们提出了一种使用超纠缠态实现更高量子通信传输速率的技术,该技术基于在单个光子上多路复用多个 DoF,传输光子,并最终在目的地使用贝尔态测量将 DoF 解复用为不同的光子。按照我们的方案,只需发送一个光子即可生成两个纠缠的量子比特对。提出的传输方案为具有更高传输速率和对可扩展量子技术的精细控制的新型量子通信协议奠定了基础。
我们考虑为作用在量子电路上的通用量子噪声设计合适的量子误差校正程序(QEC)程序的问题。通常,没有分析通用程序来获得编码和校正统一门,如果噪声未知并且必须重建噪声,问题甚至更难。现有过程依赖于变分的量子算法(VQA),并且由于成本函数的梯度的大小随量子数而衰减,因此很难训练。我们使用基于量子1(QW 1)的量子Wasserstein距离的成本函数来解决此问题。在量子信息处理中通常采用的其他量子距离方面,QW 1缺少单一不变性属性,这使其成为避免被困在本地最小值中的合适工具。专注于一个简单的噪声模型,该模型已知确切的QEC解决方案,并且可以用作理论基准,我们进行了一系列数值测试,这些测试表明如何通过QW 1指导VQA搜索,确实可以显着提高成功培训的可能性,并在使用恢复状态的情况下,以实现的态度来实现会议的方法。
1 LG 电子多伦多人工智能实验室,加拿大安大略省多伦多 M5V 1M3 2 多伦多大学化学系,加拿大安大略省多伦多 M5G 1Z8 3 多伦多大学计算机科学系,加拿大安大略省多伦多 M5S 2E4 4 威斯康星大学麦迪逊分校化学系,美国威斯康星州麦迪逊市 1101 University Ave. 53706 5 威斯康星大学麦迪逊分校物理系,美国威斯康星州麦迪逊市 1150 University Ave. 53706 6 耶鲁大学耶鲁量子研究所,美国康涅狄格州纽黑文 06520-8263 PO Box 208334 7 耶鲁大学化学系,美国康涅狄格州纽黑文 06520 PO Box 208107 8 萨里大学数学系,英国吉尔福德 9 能源耶鲁大学科学研究所,邮政信箱 27394,康涅狄格州西黑文 06516-7394,美国 10 加拿大安大略省多伦多人工智能矢量研究所,邮编 M5S 1M1 11 加拿大安大略省多伦多高级研究所,邮编 M5G 1Z8,加拿大 ∗ 任何通信均应发送给作者。
摘要:近年来,变分量子电路 (VQC) 在量子机器学习中的应用大幅增加。VQC 的灵感来自人工神经网络,它作为大规模参数化函数逼近器,在广泛的 AI 任务中实现了非凡的性能。VQC 已经通过利用量子计算中更强大的算法工具箱,在泛化和训练参数要求更少等方面取得了令人鼓舞的成果。VQC 的可训练参数或权重通常用作旋转门中的角度,而当前基于梯度的训练方法并未考虑到这一点。我们引入了 VQC 的权重重新映射,以将权重明确地映射到长度为 2 π 的区间,这从传统 ML 中汲取了灵感,其中数据重新缩放或规范化技术在许多情况下都表现出巨大的好处。我们使用一组五个函数,并以变分分类器为例,在 Iris 和 Wine 数据集上对它们进行评估。我们的实验表明,权重重新映射可以提高所有测试设置中的收敛性。此外,我们能够证明,与使用未修改的权重相比,权重重新映射可将 Wine 数据集的测试准确率提高 10%。
如何实现多色有机室温磷光(RTP)仍然具有挑战性和引人注目。在此,我们发现了一个新的原则,可以根据纳米表面限制效应来构建生态友好的色彩可调RTP纳米材料。纤维素纳米晶体(CNC)固定纤维素衍生物(CX)通过氢键相互作用,含有芳基取代基,这有效地抑制了纤维素链和发光基团的运动以抑制非辐射过渡。同时,具有强氢键网络的CNC可以隔离氧气。CX调节磷光发射。直接混合CNC和CX后,获得了一系列多色RTP纳米材料。可以通过引入各种CX和CX/CNC比的调节来对所得CX@CNC的RTP发射进行细微调整。这样的通用,便捷且有效的策略可用于制造具有宽色调的各种彩色RTP材料。由于纤维素的完整生物降解性,可以将多色磷光CX@CNC纳米材料用作环保安全墨水,以通过常规的打印和写作过程来制造一次性的抗抗逆转录注力标签和信息存储模式。
量子退火器 (QA) 是单指令量子机,只能从能量函数(称为哈密顿量)的基态进行采样。要执行程序,需要将问题转换为嵌入在硬件上的哈密顿量,然后运行单个量子机器指令 (QMI)。即使 QMI 运行了数千次试验,硬件中的噪声和缺陷也会导致 QA 得到次优解决方案。由于 QA 的可编程性有限,用户在所有试验中都执行相同的 QMI。这会导致所有试验在整个执行过程中都受到相似的噪声影响,从而导致系统偏差。我们观察到系统偏差会导致次优解决方案,并且无法通过执行更多试验或使用现有的错误缓解方案来缓解。为了应对这一挑战,我们提出了 EQUAL(E nsemble QU antum A nnea L ing)。EQUAL 通过向程序 QMI 添加受控扰动来生成 QMI 集合。在 QA 上执行时,QMI 集合可使程序避免在所有试验中遇到相同的偏差,从而提高解决方案的质量。我们使用 D-Wave 2000Q 机器进行的评估表明,EQUAL 可将基线与理想值之间的差异缩小平均 14%(最高可达 26%),而无需任何额外试验。EQUAL 可以与现有的错误缓解方案相结合,进一步缩小基线与理想值之间的差异,平均缩小 55%(最高可达 68%)。
B41.002:高 Q 值超导谐振器高电阻率硅晶片低温损耗角正切测量 B57.002:超导 Nb 薄膜中亚间隙准粒子散射和耗散 B57.008:Nb 超导射频腔的电磁响应 B57.010:用于高 Q 值谐振腔的高纯铌超导态氢化物的非平凡行为 B57.012:轴子搜索的可行性研究:Nb SRF 腔中的非线性研究 D37.002:基于三维微波腔的微波光量子转导 D39.013:带有级联低温固态热泵的量子阱子带简并制冷 D40.008:基准测试方八边形晶格 Kitaev 模型的 VQE D41.003:用于量子计算的 Nb 谐振器中氧化铌退火的原位透射电子显微镜研究 F36.005:识别超导量子比特系统中缺陷和界面处的退相干源 F36.006:使用双音光谱理解和减轻超导射频 (SRF) 腔中的损耗 F36.007:通过 HT 相界分析优化用于量子器件的 Nb 超导薄膜 F36.008:循环:超导量子比特的多机构表征 F36.010:铌射频腔的 Nb/空气界面的原子尺度研究 K29.002:超导量子材料与系统 (SQMS) – 新的 DOE 国家量子信息科学研究中心M41.009:可调谐 transmon 量子比特的长期能量弛豫动力学作为损耗计量工具 N27.006:超导量子材料与系统 (SQMS) 研究中心的量子信息科学生态系统工作 Q71.007:高磁场中的超导材料在高能物理量子传感中的应用 Q37.005:多模玻色子系统量子启发式的数值门合成 S38.003:基于微米级约瑟夫森结的约瑟夫森参量放大器的制造和特性 S72.009:探究低温真空烘烤对超导铌 3-D 谐振器光子寿命的作用 T00.106:铌硅化物纳米膜的稳定性、金属性和磁性 T00.119:不同 RRR 值的铌膜的特性低温 T72.005:单个纳米结处异质偶极场和电荷散射的太赫兹纳米成像 W40.006:量子芝诺效应对两能级系统的动态解耦 W34.013:3D SRF QPU 的潜在多模架构探索 Y34.008:高相干性 3D SRF 量子比特架构的进展 Y40.009:理解和减轻超导量子比特中 TLS 引起的高阶退相干
仍在成熟的噪声中尺度量子 (NISQ) 技术在可有效实施的算法方面面临严格的限制。在量子化学领域,变分量子本征解 (VQE) 算法已经变得无处不在,并且有许多变体。或者,基于哈密顿矩展开的技术的量子变体开辟了一条有前途的新途径,特别是连通矩展开 (CMX) 和 Peeters-Devreese-Soldatov (PDS) 能量函数。这些方法的共同点是,在准备用于计算必要矩的近似基态后,估计基态能量的准确性取决于准备状态和真实基态之间的重叠程度。因此,我们使用 ADAPT-VQE 算法来测试浅电路构造策略,以增加与精确基态的重叠,并通过本文报告的 PDS 和 CMX 基态能量的显着准确性改进得到验证。我们还表明,我们可以利用要测量的项在不同时刻高度重复这一事实,从而大幅减少必要的测量次数。通过将此测量缓存与阈值相结合,该阈值根据其相关的标量系数确定是否要测量给定项,我们观察到电路实现的数量进一步减少,同时允许可调精度。
摘要 — 量子计算机的规模不断扩大,现在的设计决策试图从这些机器中榨取更多的计算能力。本着这种精神,我们设计了一种方法,通过调整量子纠错中使用的协议来实现“近似量子纠错 (AQEC)”,从而提高近期量子计算机的计算能力。通过近似成熟的纠错机制,我们可以增加近期机器的计算量(量子比特 × 门,或“简单量子体积 (SQV)”)。我们设计的关键是一个快速硬件解码器,它可以快速近似解码检测到的错误综合征。具体来说,我们展示了一个概念验证,即通过在超导单通量量子 (SFQ) 逻辑技术中设计和实现一种新算法,可以在近期量子系统中在线完成近似错误解码。这避免了隐藏在所有离线解码方案中的关键解码积压,这会导致程序中 T 门数量的空闲时间呈指数增长 [58]。
我们的高量子效率(HQE)已向世界各地的许多研究组织提供了光电二极管。客户已经取得了创纪录的打破结果,尤其是在挤压光应用中。这些光电二极管典型地定制为特定波长,入射角和极化。